首页> 外文期刊>Biological Cybernetics >Movement curvature planning through force field internal models
【24h】

Movement curvature planning through force field internal models

机译:通过力场内部模型进行运动曲率规划

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Human motion studies have focused primarily on modeling straight point-to-point reaching movements. However, many goal-directed reaching movements, such as movements directed towards oneself, are not straight but rather follow highly curved trajectories. These movements are particularly interesting to study since they are essential in our everyday life, appear early in development and are routinely used to assess movement deficits following brain lesions. We argue that curved and straight-line reaching movements are generated by a unique neural controller and that the observed curvature of the movement is the result of an active control strategy that follows the geometry of one’s body, for instance to avoid trajectories that would hit the body or yield postures close to the joint limits. We present a mathematical model that accounts for such an active control strategy and show that the model reproduces with high accuracy the kinematic features of human data during unconstrained reaching movements directed toward the head. The model consists of a nonlinear dynamical system with a single stable attractor at the target. Embodiment-related task constraints are expressed as a force field that acts on the dynamical system. Finally, we discuss the biological plausibility and neural correlates of the model’s parameters and suggest that embodiment should be considered as a main cause for movement trajectory curvature.
机译:人体运动研究主要集中在建模直线对点运动。但是,许多目标导向的到达动作(例如,朝向自己的动作)不是笔直的,而是遵循高度弯曲的轨迹。这些运动特别有趣,因为它们在我们的日常生活中必不可少,出现在发育的早期,通常用于评估脑部病变后的运动缺陷。我们认为,弯曲的和直线的到达运动是由独特的神经控制器产生的,并且观察到的运动曲率是遵循人的身体几何形状的主动控制策略的结果,例如,避免了会碰到人体的轨迹。身体或屈服姿势接近关节极限。我们提出了一种数学模型,说明了这种主动控制策略,并显示出该模型在面向头部的不受限制的到达运动过程中,可以高精度地重现人类数据的运动学特征。该模型由一个非线性动力系统组成,该系统在目标上具有单个稳定的吸引子。与实施例有关的任务约束表示为作用在动力系统上的力场。最后,我们讨论了模型参数的生物学合理性和神经相关性,并建议应将实施方式视为运动轨迹曲率的主要原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号