...
首页> 外文期刊>Biological Cybernetics >Shaping bursting by electrical coupling and noise
【24h】

Shaping bursting by electrical coupling and noise

机译:由于电耦合和噪声而形成的爆裂

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Gap-junctional coupling is an important way of communication between neurons and other excitable cells. Strong electrical coupling synchronizes activity across cell ensembles. Surprisingly, in the presence of noise synchronous oscillations generated by an electrically coupled network may differ qualitatively from the oscillations produced by uncoupled individual cells forming the network. A prominent example of such behavior is the synchronized bursting in islets of Langerhans formed by pancreatic β-cells, which in isolation are known to exhibit irregular spiking (Sherman and Rinzel, Biophys J 54:411–425, 1988; Sherman and Rinzel, Biophys J 59:547–559, 1991). At the heart of this intriguing phenomenon lies denoising, a remarkable ability of electrical coupling to diminish the effects of noise acting on individual cells. In this paper, building on an earlier analysis of denoising in networks of integrate-and-fire neurons (Medvedev, Neural Comput 21 (11):3057–3078, 2009) and our recent study of spontaneous activity in a closely related model of the Locus Coeruleus network (Medvedev and Zhuravytska, The geometry of spontaneous spiking in neuronal networks, submitted, 2012), we derive quantitative estimates characterizing denoising in electrically coupled networks of conductance-based models of square wave bursting cells. Our analysis reveals the interplay of the intrinsic properties of the individual cells and network topology and their respective contributions to this important effect. In particular, we show that networks on graphs with large algebraic connectivity (Fiedler, Czech Math J 23(98):298–305, 1973) or small total effective resistance (Bollobas, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer, New York, 1998) are better equipped for implementing denoising. As a by-product of the analysis of denoising, we analytically estimate the rate with which trajectories converge to the synchronization subspace and the stability of the latter to random perturbations. These estimates reveal the role of the network topology in synchronization. The analysis is complemented by numerical simulations of electrically coupled conductance-based networks. Taken together, these results explain the mechanisms underlying synchronization and denoising in an important class of biological models.
机译:间隙连接偶联是神经元与其他可兴奋细胞之间交流的重要方式。强大的电耦合可同步整个电池组的活动。出人意料的是,在存在噪声的情况下,由电耦合网络产生的同步振荡可能在质量上与由形成该网络的未耦合单个单元产生的振荡有质的区别。这种行为的一个突出例子是胰岛β细胞形成的朗格罕氏岛中的同步爆裂,孤立地显示出不规则的尖峰(Sherman和Rinzel,Biophys J 54:411-425,1988; Sherman和Rinzel,Biophys J 59:547-559,1991)。这种引人入胜的现象的核心在于降噪,这是一种出色的电耦合能力,可减少噪声对单个细胞的影响。在本文中,我们基于对积分并发射神经元网络中的去噪的早期分析(Medvedev,Neural Comput 21(11):3057–3078,2009)以及我们最近对自发活动的研究进行了研究。轨迹蓝藻网络(Medvedev和Zhuravytska,神经元网络中自发尖峰的几何形状,已提交,2012年),我们得出定量估计值,表征基于电导的方波猝发细胞模型电耦合网络中的去噪。我们的分析揭示了单个细胞和网络拓扑的内在属性之间的相互作用,以及它们各自对该重要作用的贡献。特别是,我们显示了图上的网络具有较大的代数连接性(Fiedler,捷克数学J 23(98):298-305,1973)或总有效阻力较小(Bollobas,现代图论,数学研究生课程,第184卷) ,Springer,New York,1998)更好地实现了降噪。作为降噪分析的副产品,我们在分析上估计轨迹收敛到同步子空间的速率以及后者对随机扰动的稳定性。这些估计揭示了网络拓扑在同步中的作用。基于电耦合电导网络的数值模拟对分析进行了补充。综上所述,这些结果解释了在一类重要的生物模型中同步和去噪的潜在机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号