...
首页> 外文期刊>BioEnergy Research >Effect of Maize Biomass Composition on the Optimization of Dilute-Acid Pretreatments and Enzymatic Saccharification
【24h】

Effect of Maize Biomass Composition on the Optimization of Dilute-Acid Pretreatments and Enzymatic Saccharification

机译:玉米生物量组成对稀酸预处理工艺优化和酶促糖化的影响

获取原文
获取原文并翻译 | 示例

摘要

At the core of cellulosic ethanol research are innovations leading to reductions in the chemical and energetic stringency of thermochemical pretreatments and enzymatic saccharification. In this study, key compositional features of maize cell walls influencing the enzymatic conversion of biomass into fermentable sugars were identified. Stem samples from eight contrasting genotypes were subjected to a series of thermal dilute-acid pretreatments of increasing severity and evaluated for glucose release after enzymatic saccharification. The biochemically diverse set of genotypes displayed significant differences in glucose yields at all processing conditions evaluated. The results revealed that mechanisms controlling biomass conversion efficiency vary in relation to pretreatment severity. At highly severe pretreatments, cellulose conversion efficiency was primarily influenced by the inherent efficacy of the thermochemical process, and maximum glucose yields were obtained from cellulosic feedstocks harboring the highest cellulose contents per dry gram of biomass. When mild dilute-acid pretreatments were applied, however, maximum bioconversion efficiency and glucose yields were observed for genotypes combining high stem cellulose contents, reduced cell wall lignin and highly substituted hemicelluloses. For the best-performing genotype, glucose yields under sub-optimal processing regimes were only 10 % lower than the genotype-set mean at the most stringent processing conditions evaluated, while furfural production was reduced by approximately 95 %. Our results ultimately established that cellulosic feedstocks with tailored cell wall compositions can help reduce the chemical and energetic intensity of pretreatments used in the industry and improve the commercial and environmental performance of biomass-to-ethanol conversion technologies.
机译:纤维素乙醇研究的核心是创新,这些创新可降低热化学预处理和酶促糖化的化学和能量严格性。在这项研究中,确定了影响生物质向可发酵糖的酶促转化的玉米细胞壁的关键组成特征。对来自八种不同基因型的茎样品进行一系列热重度递增的稀酸预处理,并在酶促糖化后评估葡萄糖的释放。在评估的所有加工条件下,不同基因型的生化多样性显示出葡萄糖产量的显着差异。结果表明,控制生物质转化效率的机制随预处理的严重程度而变化。在高度严格的预处理中,纤维素转化效率主要受热化学过程的固有功效影响,并且从纤维素原料中每干克生物质中纤维素含量最高的纤维素原料获得最大的葡萄糖产量。但是,当采用温和的稀酸预处理时,对于基因型最大的生物转化效率和葡萄糖产量,结合了高干纤维素含量,减少的细胞壁木质素和高度取代的半纤维素。对于表现最佳的基因型,在最严格的加工条件下,次优加工制度下的葡萄糖产量仅比基因型设定平均值低10%,而糠醛产量降低约95%。我们的结果最终证明,具有定制细胞壁成分的纤维素原料可以帮助降低工业中使用的预处理的化学和能量强度,并改善生物质向乙醇转化技术的商业和环境性能。

著录项

  • 来源
    《BioEnergy Research》 |2013年第3期|1038-1051|共14页
  • 作者单位

    Wageningen UR Plant Breeding Wageningen University and Research Centre">(1);

    Graduate School Experimental Plant Sciences Wageningen University">(2);

    Wageningen UR Plant Breeding Wageningen University and Research Centre">(1);

    Graduate School Experimental Plant Sciences Wageningen University">(2);

    Wageningen UR Plant Breeding Wageningen University and Research Centre">(1);

    Wageningen UR Plant Breeding Wageningen University and Research Centre">(1);

    Wageningen UR Plant Breeding Wageningen University and Research Centre">(1);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Maize; Lignocellulose; Cell wall composition; Pretreatment; Severity index;

    机译:玉米;木质纤维素;细胞壁组成;预处理;严重程度指数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号