首页> 外文期刊>Biochemistry >Directed “in Situ” Inhibitor Elongation as a Strategy To Structurally Characterize the Covalent Glycosyl-Enzyme Intermediate of Human Pancreatic α-Amylase,
【24h】

Directed “in Situ” Inhibitor Elongation as a Strategy To Structurally Characterize the Covalent Glycosyl-Enzyme Intermediate of Human Pancreatic α-Amylase,

机译:指导“原位”抑制剂延长,作为结构表征人胰腺α-淀粉酶共价糖基酶的一种策略,

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

While covalent catalytic intermediates of retaining α-transglycosylases have been structurally characterized previously, no such information for a hydrolytic α-amylase has been obtained. This study presents a new “in situ” enzymatic elongation methodology that, for the first time, has allowed the isolation and structural characterization of a catalytically competent covalent glycosyl-enzyme intermediate with human pancreatic α-amylase. This has been achieved by the use of a 5-fluoro-β-l-idosyl fluoride “warhead” in conjunction with either α-maltotriosyl fluoride or 4′-O-methyl-α-maltosyl fluoride as elongation agents. This generates an oligosaccharyl-5-fluoroglycosyl fluoride that then reacts with the free enzyme. The resultant covalent intermediates are extremely stable, with hydrolytic half-lives on the order of 240 h for the trisaccharide complex. In the presence of maltose, however, they undergo turnover via transglycosylation according to a half-life of less than 1 h. Structural studies of intermediate complexes unambiguously show the covalent attachment of a 5-fluoro-α-l-idosyl moiety in the chair conformation to the side chain of the catalytic nucleophile D197. The elongated portions of the intermediate complexes are found to bind in the high-affinity −2 and −3 binding subsites, forming extensive hydrogen-bonding interactions. Comparative structural analyses with the related noncovalent complex formed by acarbose highlight the structural rigidity of the enzyme surface during catalysis and the key role that substrate conformational flexibility must play in this process. Taken together, the structural data provide atomic details of several key catalytic steps. The scope of this elongation approach to probe the active sites and catalytic mechanisms of α-amylases is further demonstrated through preliminary experiments with porcine pancreatic α-amylase.
机译:尽管先前已经对保留α-转糖基化酶的共价催化中间体进行了结构表征,但尚未获得有关水解α-淀粉酶的此类信息。这项研究提出了一种新的“原位”酶促延伸方法,该方法首次使具有人胰腺α-淀粉酶的催化活性共价糖基酶中间体得以分离和结构表征。这是通过结合使用5-氟-β-1-1-异戊基氟化物“战斗部”和α-麦芽三糖基氟化物或4'-O-甲基-α-麦芽糖基氟化物作为伸长剂来实现的。这产生寡糖基-5-氟糖基氟,然后与游离酶反应。所得的共价中间体非常稳定,三糖复合物的水解半衰期约为240小时。但是,在麦芽糖的存在下,它们的半衰期少于1小时,因此通过转糖基作用进行周转。中间体配合物的结构研究清楚地表明,椅子构象中的5-氟-α--1-亚氨基基部分与催化亲核试剂D197的侧链共价连接。发现中间配合物的伸长部分在高亲和力-2和-3结合亚位点结合,形成广泛的氢键相互作用。用由阿卡波糖形成的相关非共价复合物进行的比较结构分析突出了催化过程中酶表面的结构刚度,以及底物构象柔韧性必须在此过程中发挥关键作用。总之,结构数据提供了几个关键催化步骤的原子细节。通过猪胰α-淀粉酶的初步实验进一步证明了这种延伸方法的范围,以探究α-淀粉酶的活性位点和催化机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号