...
首页> 外文期刊>Biochemistry >Oxidation Reactions Performed by Soluble Methane Monooxygenase Hydroxylase Intermediates Hperoxo and Q Proceed by Distinct Mechanisms
【24h】

Oxidation Reactions Performed by Soluble Methane Monooxygenase Hydroxylase Intermediates Hperoxo and Q Proceed by Distinct Mechanisms

机译:溶解性甲烷单加氧酶羟化酶进行的氧化反应通过不同机理介导过氧化氢和Q

获取原文
获取原文并翻译 | 示例
           

摘要

Soluble methane monooxygenase is a bacterial enzyme that converts methane to methanol at ancarboxylate-bridged diiron center with exquisite control. Because the oxidizing power required for thisntransformation is demanding, it is not surprising that the enzyme is also capable of hydroxylating andnepoxidizing a broad range of hydrocarbon substrates in addition to methane. In this work we took advantagenof this promiscuity of the enzyme to gain insight into themechanisms of action ofHperoxo andQ, two oxidantsnthat are generated sequentially during the reaction of reduced protein with O2. Using double-mixing stopped-nflow spectroscopy, we investigated the reactions of the two intermediate species with a panel of substrates ofnvarying C-Hbond strength. Three classes of substrates were identified according to the rate-determining stepnin the reaction. We show for the first time that an inverse trend exists between the rate constant of reactionnwith Hperoxo and the C-H bond strength of the hydrocarbon examined for those substrates in which C-Hnbond activation is rate-determining.Deuteriumkinetic isotope effects revealed that reactions performed byQ,nbut probably not Hperoxo, involve extensive quantum mechanical tunneling. This difference sheds light on thenobservation that Hperoxo is not a sufficiently potent oxidant to hydroxylate methane, whereas Q can performnthis reaction in a facile manner. In addition, the reaction of Hperoxo with acetonitrile appears to proceed by andistinct mechanism in which a cyanomethide anionic intermediate is generated, bolstering the argument thatnHperoxo is an electrophilic oxidant that operates via two-electron transfer chemistry.
机译:可溶性甲烷单加氧酶是一种细菌酶,可在羧基桥联的二铁中心通过精确控制将甲烷转化为甲醇。因为需要这种转化所需的氧化能力,所以该酶除甲烷以外还能够羟基化和硝化广泛的烃类底物也就不足为奇了。在这项工作中,我们利用了酶的这种混杂性来深入了解Hperoxo和Q的作用机理,这是在还原蛋白与O2反应过程中顺序生成的两种氧化剂。使用双重混合停止-n流动光谱,我们研究了两种中间物种与一组具有不变C-Hbond强度的底物的反应。根据反应中决定反应速率的步骤,确定了三类底物。我们首次表明,对于那些以C-Hn键活化为速率决定性的底物,与Hoxoxo的反应速率常数与烃的CH键强度之间存在反比趋势。氘代动力学同位素效应表明,由Q,但可能不是Hperoxo,涉及广泛的量子机械隧穿。这种差异使人们发现,Hperoxo并不是一种足以使甲烷羟化甲烷的有效氧化剂,而Q可以轻松地进行该反应。此外,Hperoxo与乙腈的反应似乎是通过抗生成机理进行的,该机理产生了氰基甲基化物阴离子中间体,这支持了Hperoxo是一种通过两电子转移化学作用的亲电子氧化剂的论点。

著录项

  • 来源
    《Biochemistry》 |2010年第36期|p.7902-7912|共11页
  • 作者单位

    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号