...
首页> 外文期刊>Biochemistry >Oxidation Reactions Performed by Soluble Methane Monooxygenase HydroxylaseIntermediates H_(peroxo) and Q Proceed by Distinct Mechanisms
【24h】

Oxidation Reactions Performed by Soluble Methane Monooxygenase HydroxylaseIntermediates H_(peroxo) and Q Proceed by Distinct Mechanisms

机译:可溶性甲烷单加氧酶羟化酶中间体H_(peroxo)和Q的氧化反应通过不同的机理进行

获取原文
获取原文并翻译 | 示例
           

摘要

Soluble methane monooxygenase is a bacterial enzyme that converts methane to methanol at a carboxylate-bridged diiron center with exquisite control. Because the oxidizing power required for this transformation is demanding, it is not surprising that the enzyme is also capable of hydroxylating and epoxidizing a broad range of hydrocarbon substrates in addition to methane. In this work we took advantage of this promiscuity of the enzyme to gain insight into the mechanisms of action of H_(peroxo) and Q, two oxidants that are generated sequentially during the reaction of reduced protein with O_2. Using double-mixing stopped-flow spectroscopy, we investigated the reactions of the two intermediate species with a panel of substrates of varying C-H bond strength. Three classes of substrates were identified according to the rate-determining step in the reaction. We show for the first time that an inverse trend exists between the rate constant of reaction with H_(peroxo) and the C-H bond strength of the hydrocarbon examined for those substrates in which C-H bond activation is rate-determining. Deuterium kinetic isotope effects revealed that reactions performed by Q, but probably not H_(peroxo), involve extensive quantum mechanical tunneling. This difference sheds light on the observation that H_(peroxo) is not a sufficiently potent oxidant to hydroxylate methane, whereas Q can perform this reaction in a facile manner. In addition, the reaction of H_(peroxo) with acetonitrile appears to proceed by a distinct mechanism in which a cyanomethide anionic intermediate is generated, bolstering the argument that H_(peroxo) is an electrophilic oxidant that operates via two-electron transfer chemistry.
机译:可溶性甲烷单加氧酶是一种细菌酶,可在羧基桥联的二铁中心通过精确控制将甲烷转化为甲醇。因为需要这种转化所需的氧化能力,所以酶除甲烷以外还能够羟基化和环氧化多种烃底物也就不足为奇了。在这项工作中,我们利用了酶的这种混杂性来深入了解H_(peroxo)和Q的作用机理,H_(peroxo)和Q是在还原蛋白与O_2反应期间顺序生成的两种氧化剂。使用双重混合停止流光谱学,我们研究了两种中间物种与一组具有不同C-H键强度的底物的反应。根据反应中的速率确定步骤,确定了三类底物。我们首次表明,对于那些以C-H键活化为速率决定性的底物,与H_(peroxo)的反应速率常数与所测烃的C-H键强度之间存在相反的趋势。氘的动力学同位素效应表明,Q进行的反应(可能不是H_(过氧))涉及广泛的量子力学隧穿。这一差异为观察到H_(peroxo)不足以使甲烷羟化甲烷有效地氧化剂,而Q可以轻松地进行该反应的发现揭露了这一点。此外,H_(过氧)与乙腈的反应似乎是通过一种独特的机理进行的,在该机理中会生成氰基氰化物阴离子中间体,这支持了H_(过氧)是一种通过两电子转移化学作用的亲电子氧化剂的论点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号