...
首页> 外文期刊>IEEE transactions on automation science and engineering >Concurrent Fault Detection and Anomaly Location in Closed-Loop Dynamic Systems With Measured Disturbances
【24h】

Concurrent Fault Detection and Anomaly Location in Closed-Loop Dynamic Systems With Measured Disturbances

机译:闭环动态系统可测扰动的并发故障检测与异常定位

获取原文
获取原文并翻译 | 示例

摘要

Most data-driven process monitoring approaches consider the fault detection as a binary classification issue: normal or abnormal. All deviations from the nominal operating condition can trigger the same alarms. They fail to distinguish different fluctuation patterns and locate the positions of anomalies, such as the normal deviations in operating conditions, sensors faults, actuator faults, and process faults. A new process monitoring strategy based on orthogonal decomposition (OD) is proposed for the concurrent detection and location of different deviation patterns. OD is performed to discriminate the dynamics of data driven by measured disturbances and unmeasured disturbances in the same control system. This way, the original variable space is decomposed into the deterministic subspace and stochastic subspace. A dynamic principal component analysis-based subspace identification technique is used to construct the monitoring indices in the deterministic and stochastic subspaces, respectively. Two case studies show the validity of the OD-based process monitoring approach.Note to Practitioners-Fault diagnosis based on process data models always focused on analyzing variables' contributions to the anomaly in the past practice. But it is frequently difficult to decide the root causes just using the variables' contributions because different faults may induce a similar variation of the same variable. This paper provides a new scheme to locate the faulty components, including the sensor faults, actuator faults, process faults, and disturbance variations. It is more pertinent to learn about the fault locations than variables' contributions. Moreover, by locating faults first and then figuring out variables' contributions to a specific location, more detailed and precise diagnosis conclusions can be drawn when being compared with the results of using the variables' contributions in a global system. This new method is purely data driven and it has no demand for complex process knowledge.
机译:大多数数据驱动的过程监视方法都将故障检测视为二进制分类问题:正常还是异常。与正常工作条件的所有偏差都可以触发相同的警报。它们无法区分不同的波动模式,也无法定位异常的位置,例如操作条件下的正常偏差,传感器故障,执行器故障和过程故障。提出了一种基于正交分解(OD)的过程监控策略,用于同时检测和定位不同的偏差模式。在同一控制系统中执行OD来区分由测得的干扰和未测得的干扰驱动的数据动态。这样,原始变量空间被分解为确定性子空间和随机子空间。基于动态主成分分析的子空间识别技术分别在确定性子空间和随机子空间中构建监测指标。两个案例研究表明了基于OD的过程监控方法的有效性。基于过程数据模型的从业人员故障诊断的笔记始终侧重于分析过去实践中变量对异常的贡献。但是通常仅使用变量的贡献就很难确定根本原因,因为不同的断层可能导致相同变量的相似变化。本文提供了一种新的方案来定位故障组件,包括传感器故障,执行器故障,过程故障和干扰变化。了解故障的位置比变量的贡献更为相关。此外,通过首先定位故障,然后找出变量对特定位置的影响,与在全局系统中使用变量的影响进行比较时,可以得出更详细,更精确的诊断结论。这种新方法完全是数据驱动的,不需要复杂的过程知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号