...
首页> 外文期刊>ATW >Implementation of Passive Autocatalytic Recombiner System as a Hydrogen Mitigation System in Korean Nuclear Power Plants
【24h】

Implementation of Passive Autocatalytic Recombiner System as a Hydrogen Mitigation System in Korean Nuclear Power Plants

机译:被动式自动催化重组系统作为韩国核电站减氢系统的实施

获取原文
获取原文并翻译 | 示例

摘要

Ensuring the containment integrity during a severe accident in nuclear power reactor by maintaining the hydrogen concentration below an acceptable level has been recognized to be of critical importance since Three Mile Island and Fukushima Daiichi nuclear power plant accidents. Although there exist various mitigation measures for hydrogen risk, a passive autocatalytic recombiner (PAR) has been emphasized as a viable option for the mitigation of hydrogen risk under the extended station blackout conditions due to its passive operation characteristics for the hydrogen removal. To enhance the capability of hydrogen control, the hydrogen mitigation system with various types of PARs has been implemented for all nuclear power plants in Korea. This paper presents an implementation procedure of PAR system and the analysis results to determine the location and capacity of PAR in OPR1000. Various accident scenarios have been adopted considering important event sequences from a combination of probabilistic methods, deterministic methods and sound engineering judgment. A MAAP 4.0.6+ with a multi-compartment model has been used as an analysis tool with conservative hydrogen generation and removal models. The detailed analyses have been performed for selected severe accident scenarios including sensitivity analysis with/without operations of various safety systems. The possibility of global flame acceleration (FA) and deflagration-to-detonation transient (DDT) has been assessed with sigma (flame acceleration potential) and 7-lambda (DDT potential) criterion. It is concluded that the newly designed hydrogen mitigation system with twenty-four (24) PARs can effectively remove containment atmosphere and prevent global FA and DDT.
机译:自三英里岛和福岛第一核电站事故以来,通过将氢浓度保持在可接受的水平以下来确保核电反应堆发生严重事故时的安全壳完整性至关重要。尽管存在各种缓解氢气风险的措施,但是由于扩展的停电条件,被动式自催化重组器(PAR)被认为是缓解氢气风险的可行选择,因为它具有除氢的被动运行特性。为了增强氢气控制的能力,韩国所有核电站都已实施了带有各种类型PAR的氢气缓解系统。本文介绍了PAR系统的实现过程,并通过分析结果确定了OPR1000中PAR的位置和容量。考虑到重要事件序列,已经采用了各种事故场景,这些概率方案是概率方法,确定性方法和可靠的工程判断方法的组合。具有多隔室模型的MAAP 4.0.6+已被用作具有保守氢气生成和去除模型的分析工具。已针对选定的严重事故场景进行了详细的分析,包括使用/不使用各种安全系统进行的敏感性分析。已经使用sigma(火焰加速电位)和7 lambda(DDT电位)标准评估了整体火焰加速(FA)和爆燃-爆轰瞬变(DDT)的可能性。结论是,新设计的具有二十四(24)个PAR的减氢系统可以有效去除安全壳气氛并防止整体FA和DDT。

著录项

  • 来源
    《ATW 》 |2015年第9期| 512-516| 共5页
  • 作者单位

    Korea Hydro & Nucl Power Co Ltd, Cent Res Inst, Taejon 305343, South Korea;

    Korea Hydro & Nucl Power Co Ltd, Cent Res Inst, Taejon 305343, South Korea;

    Korea Hydro & Nucl Power Co Ltd, Cent Res Inst, Taejon 305343, South Korea;

    KEPCO Engn & Construct Co Ltd, Songnam 463870, Gyeonggi Do, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号