首页> 外文期刊>The Astrophysical journal >LOCAL THREE-DIMENSIONAL SIMULATIONS OF AN ACCRETION DISK HYDROMAGNETIC DYNAMO
【24h】

LOCAL THREE-DIMENSIONAL SIMULATIONS OF AN ACCRETION DISK HYDROMAGNETIC DYNAMO

机译:吸积盘磁动力的局部三维模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Using three-dimensional numerical simulations, we have found that the weak-field magnetorotational instability constitutes a hydromagnetic dynamo in astrophysical disks. The field amplification mechanism lies outside the scope of kinematic dynamo theory and implies that kinematic dynamo theory is not applicable to accretion disk systems. We begin with simulations of isotropic, homogeneous turbulence to demonstrate the ability of our finite-difference code to reproduce known dynamos. To calibrate our code, we measure magnetic field rates when the turbulent velocity field is not sustained through external forcing. When the turbulence is maintained with imposed velocity fields, a magnetic dynamo can be produced. Two cases are considered: velocity fields with and without net helicity. Both the helical and the nonhelical velocity fields amplify and sustain magnetic fields despite substantial turbulent dissipation. The nonhelical dynamo increases the magnetic field energy by an order of magnitude. The helical dynamo produces greater amplification (a factor of 30 in energy) and a more ordered field. Lorentz forces eventually limit the growth of the magnetic field in both cases. We next carry out simulations in the local shearing box model of an accretion disk. The initial magnetic field has a mean field value of zero over the computational domain and is weak in the sense that the initial Alfven speed is much less than the sound speed. The magnetorotational instability rapidly generates turbulence within the disk. The turbulence is anisotropic, producing significant Maxwell and Reynolds stresses that transport angular momentum outward. Both the stresses and magnetic energy density remain subthermal and do not approach equipartition. The magnetic energy is amplified by a factor of 20 and maintained for over 200 orbits of time, far longer than the magnetic decay time in the absence of an amplification mechanism. A parameter survey indicates the final turbulent state does not depend on the initial average field strength; some dependence on the computational domain size, magnetic Prandtl number, and numerical resolution is observed. Finally, we demonstrate explicitly that more than shear and turbulence are required to produce dynamo amplification of magnetic fields.
机译:使用三维数值模拟,我们发现弱场磁旋转不稳定性构成了天文学磁盘中的水磁发电机。场放大机制不在运动学理论的范围之内,这意味着运动学理论不适用于吸积盘系统。我们从各向同性,均匀湍流的模拟开始,以证明我们的有限差分代码能够再现已知的发电机。为了校准我们的代码,当湍流速度场无法通过外力维持时,我们测量磁场速率。当通过施加的速度场保持湍流时,可以产生磁发电机。考虑两种情况:具有和不具有净螺旋度的速度场。尽管有很大的湍流耗散,但是螺旋速度场和非螺旋速度场都放大并维持磁场。非螺旋发电机将磁场能量增加一个数量级。螺旋发电机产生更大的放大(能量的30倍)和更有序的场。在这两种情况下,洛伦兹力最终都会限制磁场的增长。接下来,我们在吸积盘的局部剪切盒模型中进行模拟。初始磁场在计算域上的平均磁场值为零,并且在初始Alfven速度远小于声速的意义上是弱的。磁旋转不稳定性会在磁盘内迅速产生湍流。湍流是各向异性的,会产生明显的麦克斯韦应力和雷诺应力,从而将角动量向外传输。应力和磁能密度都保持亚热,并且不接近均分。磁能被放大20倍,并维持200多个轨道,这比没有放大机制时的磁衰减时间长得多。参数调查表明,最终的湍流状态不取决于初始平均场强。观察到一些对计算域大小,磁Prandtl数和数值分辨率的依赖。最后,我们明确表明,要产生磁场的放大作用,不仅需要剪切力和湍流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号