...
首页> 外文期刊>The Astrophysical journal >ELECTRON PREACCELERATION MECHANISMS IN THE FOOT REGION OF HIGH ALFVENIC MACH NUMBER SHOCKS
【24h】

ELECTRON PREACCELERATION MECHANISMS IN THE FOOT REGION OF HIGH ALFVENIC MACH NUMBER SHOCKS

机译:高航空马赫数激波的足部区域的电子加速机制。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

High Mach number, collisionless perpendicular shocks are known to accelerate electrons to strongly rela-tivistic energies by diffusive shock acceleration. This presupposes the existence of mildly relativistic electrons, whose preacceleration mechanism from lower ambient energies (the injection problem) remains an open question. Here a particle in cell simulation is used to investigate the preacceleration mechanism. Depending on the parameters of the upstream plasma and the shock velocity, the growth rate of instabilities in the foot of the shock can be significant, leading to the existence of nonlinear modes and the formation of electron phase space holes. It is found that these are associated with electron preacceleration, which can be divided into three phases. In the initial phase electrons are accelerated in the shock foot by the surfatron mechanism, which involves particle trapping in nonlinear wave modes. This mechanism is strongly linked to the existence of solitary electron phase space holes. The second phase is characterized by fluctuations in the magnetic field strength together with μ-conserving motion of the electrons. Finally, in the third phase the magnetic moment μ is no longer conserved, perhaps due to turbulent scattering processes. Energies up to Lorentz factors of approx=6 are achieved, for simulations in which the inflow kinetic energy of upstream electrons is 3.5keV.
机译:已知马赫数高,无碰撞的垂直冲击会通过扩散冲击加速度将电子加速为强相对论能量。这就以存在轻度相对论电子为前提,其相对较低的环境能量(注入问题)产生的预加速机制仍然是一个悬而未决的问题。在这里,单元模拟中的粒子用于研究预加速机制。根据上游等离子体的参数和激波速度,激波脚的不稳定性增长速度可能会很大,从而导致非线性模式的存在和电子相空间空穴的形成。发现这些与电子预加速有关,电子预加速可以分为三个阶段。在初始阶段,电子通过冲击子机制在激波脚中加速,这涉及以非线性波模式捕获粒子。该机制与孤电子相空间孔的存在密切相关。第二相的特征在于磁场强度的波动以及电子的μ守恒运动。最后,在第三阶段,也许由于湍流散射过程而不再保持磁矩μ。对于其中上游电子的流入动能为3.5keV的模拟,可实现高达约6的洛伦兹因子的能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号