...
首页> 外文期刊>The Astrophysical journal >H_2 FORMATION ON GRAIN SURFACES
【24h】

H_2 FORMATION ON GRAIN SURFACES

机译:谷物表面上的H_2形成

获取原文
获取原文并翻译 | 示例

摘要

The most abundant interstellar molecule, H_2, is generally thought to form by recombination of H atoms on grain surfaces. On surfaces, hydrogen atoms can be physisorbed and chemisorbed and their mobility can be governed by quantum mechanical tunneling or thermal hopping. We have developed a model for molecular hydrogen formation on surfaces. This model solves the time-dependent kinetic rate equation for atomic and molecular hydrogen and their isotopes, taking the presence of physisorbed and chemisorbed sites, as well as quantum mechanical diffusion and thermal hopping, into account. The results show that the time evolution of this system is mainly governed by the binding energies and barriers against migration of the adsorbed species. We have compared the results of our model with experiments on the formation of HD on silicate and carbonaceous surfaces under irradiation by atomic H and D beams at low and at high temperatures. This comparison shows that including both isotopes, both physisorbed and chemisorbed wells, and both quantum mechanical tunneling and thermal hopping is essential for a correct interpretation of the experiments. This comparison allows us to derive the characteristics of these surfaces. For the two surfaces we consider, we determine the binding energy of H atoms and H_2 molecules, as well as the barrier against diffusion for the H atoms to move from one site to another. We conclude that molecular hydrogen formation is efficient until quite high (~500 K) temperatures. At low temperatures, recombination between mobile physisorbed atoms and trapped chemisorbed atoms dominates. At higher temperatures, chemisorbed atoms become mobile, and this then drives molecular hydrogen formation. We have extended our model to astrophysically relevant conditions. The results show that molecular hydrogen formation proceeds with near unity efficiency at low temperatures (T≤ 20 K). While the efficiency drops, molecular hydrogen formation in the ISM can be very efficient even at high temperatures, depending on the physical characteristics of the surface.
机译:通常认为,最丰富的星际分子H_2是通过晶粒表面上H原子的重组形成的。在表面上,氢原子可以被物理吸附和化学吸附,其迁移率可以通过量子机械隧穿或热跳跃来控制。我们已经开发了一种在表面形成氢分子的模型。该模型解决了原子和分子氢及其同位素的时变动力学方程,并考虑了物理吸附和化学吸附的位置以及量子力学扩散和热跳跃。结果表明,该系统的时间演化主要受结合能和阻碍吸附物质迁移的障碍的控制。我们将模型的结果与在低温和高温下在原子H和D束辐照下在硅酸盐和碳质表面上形成HD的实验进行了比较。这种比较表明,包括两种同位素,包括物理吸附和化学吸附的孔,以及量子力学隧穿和热跳跃对于正确解释实验都是必不可少的。通过比较,我们可以得出这些表面的特征。对于我们考虑的两个表面,我们确定H原子和H_2分子的结合能,以及H原子从一个位置移动到另一个位置的扩散阻挡层。我们得出结论,直到相当高的温度(〜500 K),分子氢的形成才有效。在低温下,可移动的物理吸附的原子与捕获的化学吸附的原子之间的重组占主导。在更高的温度下,化学吸附的原子变得可移动,然后驱动分子氢的形成。我们已经将我们的模型扩展到与天体有关的条件。结果表明,在低温(T≤20 K)下,分子氢的形成几乎以单位效率进行。尽管效率下降,但取决于表面的物理特性,即使在高温下,ISM中分子氢的形成也可能非常有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号