...
首页> 外文期刊>The Astrophysical journal >Galactic Spiral Shocks With Thermal Instability
【24h】

Galactic Spiral Shocks With Thermal Instability

机译:具有热不稳定性的银河螺旋冲击

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Using one-dimensional hydrodynamic simulations including interstellar heating, cooling, and thermal conduction, we investigate nonlinear evolution of gas flow across galactic spiral arms. We model the gas as a non-self-gravitating, unmagnetized fluid and follow its interaction with a stellar spiral potential in a local frame comoving with the stellar pattern. Initially uniform gas with density n_0 in the range 0.5 cm~(-3) ≤ n_0 ≤ 10 cm~(-3) rapidly separates into warm and cold phases as a result of thermal instability (TI) and also forms a quasi-steady shock that prompts phase transitions. After saturation, the flow follows a recurring cycle: warm and cold phases in the interarm region are shocked and immediately cool to become a denser cold medium in the arm; postshock expansion reduces the mean density to the unstable regime in the transition zone and TI subsequently mediates evolution back into warm and cold interarm phases. For our standard model with n_0 = 2 cm~(-3), the gas resides in the dense arm, thermally unstable transition zone, and interarm region for 14%, 22%, and 64% of the arm-to-arm crossing time, respectively. These regions occupy 1 %, 16%, and 83% of the ann-to-arm distance, respectively. Gas at intermediate temperatures (i.e., neither warm stable nor cold states) represents ~25%-30% of the total mass, similar to the fractions estimated from H_I observations (larger interarm distances could reduce this mass fraction, whereas other physical processes associated with star formation could increase it). Despite transient features and multiphase structure, the time-averaged shock profiles can be matched to that of a diffusive isothermal medium with temperature 1000 K (which is T_(warm)) and a "particle" mean free path of l_0 = 100 pc. Finally, we quantify numerical conductivity associated with translational motion of phase-separated gas on the grid and show that convergence of numerical results requires the numerical conductivity to be comparable to or smaller than the physical conductivity.
机译:使用一维流体动力学模拟,包括星际加热,冷却和热传导,我们研究了跨银河旋臂的气流的非线性演变。我们将气体建模为非自重,未磁化的流体,并在与恒星图案共同移动的局部框架中跟踪其与恒星螺旋势的相互作用。由于热不稳定性(TI)的影响,最初浓度为n_0的均匀气体(n_0范围为0.5 cm〜(-3)≤n_0≤10 cm〜(-3)迅速分离为热相和冷相,并形成准稳态冲击提示相变。饱和后,流动遵循一个循环周期:手臂间区域的冷热相受到冲击并立即冷却,成为手臂中较冷的致密介质。震后膨胀将平均密度降低到过渡区的不稳定状态,TI随后将演化介导回温暖和寒冷的臂间阶段。对于我们的n_0 = 2 cm〜(-3)的标准模型,气体滞留在致密臂,热不稳定过渡区和臂间区域中,占臂对臂交叉时间的14%,22%和64% , 分别。这些区域分别占到手臂距离的1%,16%和83%。处于中间温度(即既不是热稳定状态也不是冷状态)的气体占总质量的〜25%-30%,类似于从H_I观测值估计的分数(较大的臂间距离可以减小该质量分数,而其他物理过程与恒星形成可能会增加它)。尽管具有暂态特征和多相结构,但时间平均冲击分布可以与温度为1000 K(这是 T_(warm))且l_0 = 100 pc的“粒子”平均自由程的扩散等温介质的分布相匹配。 。最后,我们量化了与相分离气体在网格上的平移运动相关的数值电导率,并表明数值结果的收敛要求数值电导率必须等于或小于物理电导率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号