...
首页> 外文期刊>The Astrophysical journal >PHASE-TRANSITION THEORY OF INSTABILITIES. Ⅲ. THE THIRD-HARMONIC BIFURCATION ON THE JACOBI SEQUENCE AND THE FISSION PROBLEM
【24h】

PHASE-TRANSITION THEORY OF INSTABILITIES. Ⅲ. THE THIRD-HARMONIC BIFURCATION ON THE JACOBI SEQUENCE AND THE FISSION PROBLEM

机译:不稳定性的相变理论。 Ⅲ。雅各比序列的三次钟形分叉和裂变问题

获取原文
获取原文并翻译 | 示例

摘要

In Christodoulou et al. (1995a, b, hereafter Papers Ⅰ and Ⅱ), we used a free-energy minimization approach that stems from the Ginzburg-Landau theory of phase transitions to describe in simple and clear physical terms the secular and dynamical instabilities as well as the bifurcations along equilibrium sequences of rotating, self-gravitating fluid systems. Based on the physical picture that emerged from this method, we investigate here the secular and dynamical third-harmonic instabilities that are presumed to appear first and at the same point on the Jacobi sequence of incompressible zero-vorticity ellipsoids. Poincare (1885) found a bifurcation point on the Jacobi sequence where a third-harmonic mode of oscillation becomes neutral. A sequence of pear-shaped equilibria branches off at this point, but this result does not necessarily imply secular instability. The total energies of the pear-shaped objects must also be lower than those of the corresponding Jacobi ellipsoids with the same angular momentum. This condition is not met if the pear-shaped objects are assumed to rotate uniformly. Near the bifurcation point, such uniformly rotating pear-shaped objects stand at higher energies relative to the Jacobi sequence (e.g., Jeans 1929). This result implies secular instability in pear-shaped objects and a return to the ellipsoidal form. Therefore, assuming that uniform rotation is maintained by viscosity, the Jacobi ellipsoids continue to remain secularly stable (and thus dynamically stable as well) past the third-harmonic bifurcation point. Cartan (1924) found that dynamical third-harmonic instability also sets in at the Jacobi-pear bifurcation. This result is irrelevant in the case of uniform rotation because the perturbations used in Cartan's analysis carry vorticity and, by Kelvin's theorem of irrotational motion, cannot cause instability. Such vortical perturbations cause differential rotation that cannot be damped since viscosity has been assumed absent from Cartan's equations. Thus, Cartan's instability leads to differentially rotating objects and not to uniformly rotating pear-shaped equilibria. Physically, this instability is not realized in viscous Jacobi ellipsoids because the vortical modes disappear in the presence of any amount of viscosity (cf. Narayan, Goldreich, & Goodman 1987).
机译:在Christodoulou等。 (1995a,b,以下为论文Ⅰ和Ⅱ),我们采用了基于Ginzburg-Landau相变理论的自由能最小化方法,以简单明了的物理术语描述了长期和动态的不稳定性以及沿旋转的自重流体系统的平衡序列。基于这种方法产生的物理图像,我们在这里研究了在不可压缩零涡度椭圆体的Jacobi序列上首先出现并同时出现的长期和动态三次谐波不稳定性。 Poincare(1885)在雅可比序列上发现了一个分叉点,在该分叉点处,三次谐波振荡模式变为中性。在这一点上会出现一系列梨形的平衡点,但是这个结果并不一定意味着长期的不稳定性。梨形物体的总能量也必须低于具有相同角动量的相应雅可比椭圆体的总能量。如果假设梨形物体均匀旋转,则不满足此条件。在分叉点附近,这种均匀旋转的梨形物体相对于Jacobi序列(例如Jeans 1929)处于更高的能量。该结果暗示梨形物体的长期不稳定性,并返回到椭圆形。因此,假设通过粘度保持均匀旋转,则雅可比椭球在三次谐波分叉点之后继续保持长期稳定(因此也动态稳定)。 Cartan(1924)发现动态的三次谐波不稳定性也出现在雅可比梨的分叉处。在匀速旋转的情况下,此结果是无关紧要的,因为在Cartan分析中使用的扰动带有涡旋,并且根据开尔文的旋转运动定理,不会引起不稳定。这样的涡旋扰动会引起差动旋转,该差动旋转无法衰减,因为假设Cartan方程式中不存在粘度。因此,Cartan的不稳定性会导致物体旋转不同,而不会使梨形平衡均匀旋转。从物理上讲,这种不稳定性在粘性雅可比椭圆体中无法实现,因为在存在任何粘度的情况下,涡旋模式都会消失(参见Narayan,Goldreich和Goodman 1987)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号