首页> 外文期刊>Acta astronautica >End-to-end design of a robust attitude control and vibration suppression system for large space smart structures
【24h】

End-to-end design of a robust attitude control and vibration suppression system for large space smart structures

机译:用于大型空间智能结构的鲁棒姿态控制和振动抑制系统的端到端设计

获取原文
获取原文并翻译 | 示例
           

摘要

The standard approach of controlling in-orbit large flexible structures only by adopting actuators and sensors located at platform level is currently being challenged by new missions' stringent requirements in terms of demanding guidance profiles and instrument performance. In this perspective, smart materials offer a different solution to improve the performance of space systems by controlling the vibrations of such lightweight structures. In this paper, the problem of designing an end-to-end architecture for active control of large in-orbit structures is addressed. First, a FE model of a large space antenna is derived by using commercial software. The instrument is designed to be supported by an active deployable frame hosting an optimal minimum set of collocated smart actuators and sensors. To this purpose, a comparison among different placement techniques, as Gramian and Modal Strain Energy (MSE) based methods, is proposed to find the final configuration for both actuators and sensors. Attention is paid to create a GNC strategy combining collocated control on flexible appendages with platform control, while minimizing the relative displacements among the most critical points of the antenna. To achieve high performance, Linear Fractional Transformation (LFT) modelling and advanced multivariable techniques are implemented. Finally, to validate the proposed controller, the control system is tested by simulating typical spacecraft manoeuvre profiles.
机译:仅通过采用位于平台级别的执行器和传感器来控制轨道轨道轨道轨道的标准方法目前正在通过新的任务的严格要求在苛刻的引导简档和仪器性能方面受到挑战。在这种角度来看,智能材料通过控制这种轻质结构的振动来提供不同的解决方案来提高空间系统的性能。在本文中,解决了设计大型轨道结构的主动控制端到端架构的问题。首先,通过使用商业软件导出大空间天线的FE模型。该仪器旨在由托管最佳最小合作智能执行器和传感器的活动可部署帧支持。为此目的,提出了一种与基于克兰西亚和模态应变能量(MSE)的方法的不同放置技术的比较,以找到致动器和传感器的最终配置。支付注意力以创建GNC策略将合作控制与平台控制的灵活附件相结合,同时最大限度地减少天线最关键点之间的相对位移。为实现高性能,实现了线性分数变换(LFT)建模和先进的多变量技术。最后,为了验证所提出的控制器,通过模拟典型的航天器机动配置文件来测试控制系统。

著录项

  • 来源
    《Acta astronautica》 |2021年第10期|416-428|共13页
  • 作者单位

    Sapienza Univ Rome Dept Mech & Aerosp Engn DIMA Via Eudossiana 18 I-00184 Rome Italy;

    Sapienza Univ Rome Dept Mech & Aerosp Engn DIMA Via Eudossiana 18 I-00184 Rome Italy;

    Sapienza Univ Rome Sch Aerosp Engn Via Salaria 851 I-00138 Rome Italy;

    Sapienza Univ Rome Dept Astronaut Engn Elect & Energy DIAEE Via Eudossiana 18 I-00184 Rome Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号