首页> 外文期刊>Acta astronautica >Terminal adaptive guidance via reinforcement meta-learning: Applications to autonomous asteroid close-proximity operations
【24h】

Terminal adaptive guidance via reinforcement meta-learning: Applications to autonomous asteroid close-proximity operations

机译:通过强化元学习进行终端自适应制导:在小行星近距离自主操作中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Current practice for asteroid close proximity maneuvers requires extremely accurate characterization of the environmental dynamics and precise spacecraft positioning prior to the maneuver. This creates a delay of several months between the spacecraft's arrival and the ability to safely complete close proximity maneuvers. In this work we develop an adaptive integrated guidance, navigation, and control system that can complete these maneuvers in environments with unknown dynamics, with initial conditions spanning a large deployment region, and without a shape model of the asteroid. The system is implemented as a policy optimized using reinforcement meta-learning. The lander is equipped with an optical seeker that locks to either a terrain feature, reflected light from a targeting laser, or an active beacon, and the policy maps observations consisting of seeker angles and LIDAR range readings directly to engine thrust commands. The policy implements a recurrent network layer that allows the deployed policy to adapt real time to both environmental forces acing on the agent and internal disturbances such as actuator failure and center of mass variation. We validate the guidance system through simulated landing maneuvers in a six degrees-of-freedom simulator. The simulator randomizes the asteroid's characteristics such as solar radiation pressure, density, spin rate, and nutation angle, requiring the guidance and control system to adapt to the environment. We also demonstrate robustness to actuator failure, sensor bias, and changes in the lander's center of mass and inertia tensor. Finally, we suggest a concept of operations for asteroid close proximity maneuvers that is compatible with the guidance system.
机译:小行星近距离操纵的当前实践要求在操纵之前对环境动力学进行极为精确的表征,并要求航天器进行精确定位。这在航天器到达与安全完成近距离操纵的能力之间造成了几个月的延迟。在这项工作中,我们开发了一种自适应的集成制导,导航和控制系统,该系统可以在动力学未知的环境中完成这些操作,初始条件跨越较大的部署区域,并且没有小行星的形状模型。该系统被实现为使用强化元学习优化的策略。着陆器配备了一个光学导引器,该导引器可锁定地形特征,来自目标激光的反射光或活动信标,并且该策略将包括导引器角度和LIDAR范围读数的观测结果直接映射到发动机推力命令。该策略实现了循环网络层,该层允许已部署的策略使实时适应代理上施加的环境力以及内部干扰(例如执行器故障和质心变化)。我们通过六自由度模拟器中的模拟着陆演习来验证制导系统。该模拟器随机化小行星的特性,例如太阳辐射压力,密度,旋转速率和章动角,需要引导和控制系统以适应环境。我们还展示了对执行器故障,传感器偏置以及着陆器质心和惯性张量变化的鲁棒性。最后,我们提出了与制导系统兼容的小行星近距离操纵的操作概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号