...
首页> 外文期刊>Acta astronautica >Analytical approach to spacecraft formation-flying with low-thrust relative spiral trajectories
【24h】

Analytical approach to spacecraft formation-flying with low-thrust relative spiral trajectories

机译:低推力相对螺旋轨迹的航天器编队飞行的解析方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This work addresses the growing need for an intuitive, systematic approach to low-thrust spacecraft formation flying by extending shape-based continuous thrust trajectory design methods to the relative motion of two spacecraft. There is widespread interest in distributed space systems for their low costs, broad capabilities, and high redundancy. This trend introduces a new challenge for trajectory design when combined with the increasing prevalence of low-thrust, high specific impulse electric propulsion systems. That challenge is met herein with a geometrically intuitive, semi-analytical solution to the low-thrust problem. Beginning with the equations of relative motion of two spacecraft, an unperturbed chief and a continuously-thrusting deputy, a thrust profile is constructed which transforms the equations into a form that is solved analytically. The resulting relative trajectories are the family of sinusoidal spirals, which provide diversity for design and optimization based upon a single thrust parameter. Closed-form expressions are derived for the trajectory shape and time-of-flight for two prescribed relative velocity behaviors, and used to develop a novel patched-spirals trajectory design and optimization method. The example problem of a servicer spacecraft establishing and reconfiguring a formation around a target in geostationary earth orbit is used to demonstrate the application of the patched spirals technique as well as the advantages of the relative spiral trajectories over impulsive maneuvers. The sensitivity of the trajectory solutions to deviations from the underlying assumptions, uncertainties in the state, and errors in thrust are studied through high-fidelity simulation.
机译:这项工作通过将基于形状的连续推力轨迹设计方法扩展到两个航天器的相对运动,解决了对低推力航天器编队飞行的直观,系统化方法的日益增长的需求。分布式空间系统的低成本,广泛功能和高冗余性引起了人们的广泛兴趣。当低推力,高比脉冲电推进系统的普及率不断提高时,这种趋势给轨迹设计带来了新的挑战。本文通过对低推力问题的几何直观,半解析解决方案解决了这一难题。从两个不受干扰的首席和连续推进副手的航天器的相对运动方程开始,构造了一个推力剖面,将方程转换成可以解析的形式。产生的相对轨迹是正弦螺旋线族,它们为基于单个推力参数的设计和优化提供了多样性。推导了两种规定的相对速度行为的轨迹形状和飞行时间的闭式表达式,并将其用于开发新颖的螺旋桨轨迹设计和优化方法。一个服务航天器在对地静止地球轨道上的目标周围建立和重构地层的示例问题被用来证明修补螺旋技术的应用以及相对螺旋轨迹相对于脉冲机动的优势。通过高保真仿真研究了轨迹解对偏离基本假设,状态不确定性和推力误差的敏感性。

著录项

  • 来源
    《Acta astronautica》 |2018年第12期|175-190|共16页
  • 作者

    Matthew Willis; Simone DAmico;

  • 作者单位

    Department of Mechanical Engineering, Stanford University;

    Department of Aeronautics and Astronautics, Stanford University;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号