...
首页> 外文期刊>Acta astronautica >IRASSI infrared space interferometer: Formation geometry and relative dynamics analysis
【24h】

IRASSI infrared space interferometer: Formation geometry and relative dynamics analysis

机译:IRASSI红外空间干涉仪:地层几何和相对动力学分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Space-based interferometry has gained prominence in recent years, largely because higher spatial resolutions of celestial observations can be achieved with multi-telescope formations compared to those achieved with a fixed-aperture, single telescope. IRASSI is a space interferometer composed of five spacecraft, whose aim is to observe particular chemical and physical processes in cold regions of space, such as dust clouds and stellar disks, in the far-infrared frequencies. Ultimately, the goal is to study the genesis of planets, star formation and evolution processes in these cold regions and to understand how prebiotic conditions in Earth-like planets are created. IRASSI will orbit the second Lagrange point, L2, of Sun-Earth/Moon system. The operating principle of IRASSI is based on free-drifting baselines, which dynamically change during the observations and measure therefore the incoming wavefront of a celestial target at different locations in space. This process relies on very accurate measurements of the baselines - at micrometer level - rather than on precise control of the formation. Naturally, a free-flying formation comes with a set of challenges, namely identifying a nominal formation geometry, that is, a suitable dispersion of the telescopes in three-dimensional space. In addition, understanding how this free-drifting geometry is expected to change is crucial, particularly if this may affect the operation of the telescope instruments and thus the quality of the final synthesized images. The present paper describes therefore the major requirements for establishing a desired formation geometry and proposes a preliminary nominal formation for the observations. The relative dynamics of the free-drifting spacecraft are modeled and evaluated. Final considerations regarding formation control are presented and the paper concludes with a summary of the work and outlook for the future.
机译:近年来,基于天基的干涉测量技术日益受到关注,这主要是因为与使用固定孔径单望远镜实现的天文观测相比,使用多望远镜成像可以实现更高的天文观测空间分辨率。 IRASSI是由五个航天器组成的太空干涉仪,其目的是观察太空寒冷区域(例如尘云和恒星盘)在远红外频率下的特定化学和物理过程。最终,目标是研究这些寒冷地区的行星起源,恒星形成和演化过程,并了解如何在类似地球的行星中产生益生元条件。 IRASSI将绕太阳/月球系统的第二个拉格朗日点L2绕轨道运行。 IRASSI的工作原理基于自由漂移基线,该基线在观测期间会动态变化,因此可以测量空间目标在不同位置的天体入射波阵面。此过程依赖于基线的非常精确的测量-在微米级别-而不是对地层的精确控制。自然地,自由飞行的编队面临着一系列挑战,即确定标称编队的几何形状,即望远镜在三维空间中的适当分散。此外,了解这种自由漂移的几何形状如何变化至关重要,特别是如果这可能会影响望远镜仪器的操作,从而影响最终合成图像的质量时,尤其如此。因此,本文描述了建立所需地层几何形状的主要要求,并提出了用于观测的初步名义地层。对自由飞行航天器的相对动力学进行了建模和评估。介绍了有关编队控制的最终考虑因素,并且本文最后总结了工作和对未来的展望。

著录项

  • 来源
    《Acta astronautica》 |2018年第12期|394-409|共16页
  • 作者单位

    Institute of Space Technology & Space Applications, Munich Bundeswehr University;

    Planet and Star Formation Dept., Max Planck Institute for Astronomy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号