...
首页> 外文期刊>Acta astronautica >Simulated microgravity alters multipotential differentiation of rat mesenchymal stem cells in association with reduced telomerase activity
【24h】

Simulated microgravity alters multipotential differentiation of rat mesenchymal stem cells in association with reduced telomerase activity

机译:模拟微重力改变大鼠间充质干细胞的多能分化,并降低端粒酶活性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Microgravity is one of the most important characteristics in space flight. Exposure to microgravity results in extensive physiological changes in humans. Bone loss is one of the changes with serious consequences; however, the mechanism retains unclear. As the origin of osteoprogenitors, mesenchymal stem cells (MSCs) may play an important role in it. After cultured under simulated microgravity (in a rotary cell culture system, RCCS), MSCs were stained using oil red O to identify adipocytes. The mRNA level of bone morphogenetic protein (BMP)-2 and peroxisome proliferators-activated receptor (PPAR) γ2 was determined by RT-PCR. Otherwise, MSCs were induced to osteogenic differentiation after microgravity culture, and then the activity of alkaline phosphatase (ALP) was determined by PNPP and the content of osteocalcin (OC) by ELISA. Furthermore, the telomerase activity in MSCs was measured by TRAP. The results showed that simulated microgravity inhibited osteoblastic differentiation and induced adipogenic differentiation accompanied by the change of gene expression of BMP-2 and PPARγ2 in MSCs. Meanwhile, the telomerase activity decreased significantly in MSCs under simulated microgravity. The reduced bone formation in space flight may partly be due to the altered potential differentiation of MSCs associated with telomerase activity which plays a key role in regulating the lifespan of cell proliferation and differentiation. Therefore, telomerase activation/replacement may act as a potential countermeasure for microgravity-induced bone loss.
机译:微重力是太空飞行中最重要的特征之一。接触微重力会导致人体发生广泛的生理变化。骨丢失是造成严重后果的变化之一。但是,机制尚不清楚。作为骨祖细胞的来源,间充质干细胞(MSC)可能在其中起重要作用。在模拟微重力下培养(在旋转细胞培养系统,RCCS中)后,使用油红O对MSC进行染色以鉴定脂肪细胞。通过RT-PCR测定骨形态发生蛋白(BMP)-2和过氧化物酶体增殖物激活受体(PPAR)γ2的mRNA水平。否则,微重力培养后诱导MSCs向成骨细胞分化,然后用PNPP测定碱性磷酸酶(ALP)的活性,用ELISA测定骨钙素(OC)的含量。此外,通过TRAP测量了MSC中的端粒酶活性。结果表明,模拟微重力抑制成骨细胞分化并诱导成脂分化,并伴随着MSCs中BMP-2和PPARγ2基因表达的变化。同时,在微重力作用下,MSCs的端粒酶活性明显降低。太空飞行中骨骼形成的减少可能部分是由于与端粒酶活性相关的MSCs的潜在分化改变,这在调节细胞增殖和分化的寿命中起着关键作用。因此,端粒酶的激活/替代可能作为微重力诱导的骨质丢失的潜在对策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号