首页> 外文期刊>Acta astronautica >An innovative nanophotonic information processing concept implementing cogent microanosensors for space robotics
【24h】

An innovative nanophotonic information processing concept implementing cogent microanosensors for space robotics

机译:创新的纳米光子信息处理概念,为空间机器人技术实现了可靠的微/纳米传感器

获取原文
获取原文并翻译 | 示例
           

摘要

Cogent sensors, defined as sensors that are capable of performing the transformation of raw data into information, are shown to be of the essence for realization of the long sought-after autonomous robots for space applications. A strongly miniaturized integration of sensing and information processing systems is needed for cogent sensors designed for autonomous sensing-information processing (IP)-actuating behavior. It is shown that the recently developed field of quantum holography (QH), stemming from geometric quantization of any holographic processes through the Heisenberg Group (G) and deeply different, as stressed in detail, from other meanings of "quantum holography" in the literature, supplies the nanophotonic tools for designing and assembling an associative memory (AM) as the brain implementing such strong cogency. An AM is designed through a free-space interconnected large planar multilayer architecture of quantum well-based two-port neurons implementing a shift register on the manifold of G, and whose input consists of photonic holograms from high frequency pulsed microlasers in the infrared band of em or em-transduced outside signals. The optoelectronics as relative, integrated into a hybrid chip involving photonic detectors, microlasers and electronic components for the clock control system, would allow cycle times as short as 30 ns with the large spatial bandwidth available in photonics. IP through QH concerns the encoding and decoding of holographic interference patterns, not of mere binary digital logical (syntactic) information. Accordingly, QH defines on the G's manifold an IP paradigm where information as experimental knowledge is processed; i.e., IP concerns both syntax and semantics. It is shown that such QH-neural brain would cogently deal with spurious signals as random noise that would be caused to die out on the way to the intended target through parallel massive and real-time IP.
机译:Cogent传感器被定义为能够将原始数据转换为信息的传感器,对于实现广受欢迎的太空机器人来说,这是至关重要的。设计用于自主感应信息处理(IP)致动行为的有效传感器,需要将感应和信息处理系统高度集成在一起。结果表明,最近发展起来的量子全息(QH)领域,源于通过海森堡群(G)进行的任何全息过程的几何量化,并且与文献中“量子全息”的其他含义有很大的不同(详细说明) ,提供了用于设计和组装联想记忆(AM)的纳米光子工具,使大脑实现了如此强大的功能。 AM是通过基于量子阱的两端口神经元的自由空间互连大型平面多层结构设计的,该结构在G的流形上实现了移位寄存器,其输入由来自红外波段的高频脉冲微激光的光子全息图组成。 em或em转换的外部信号。相对而言,集成到包含光子探测器,微激光器和时钟控制系统电子组件的混合芯片中的光电子器件将允许周期时间短至30 ns,并具有光子学中可用的大空间带宽。通过QH的IP与全息干涉图样的编码和解码有关,而不仅仅是二进制数字逻辑(语法)信息的编码和解码。因此,QH在G的歧管上定义了IP范式,在该范式中处理作为实验知识的信息。即IP既涉及语法又涉及语义。结果表明,这种QH神经大脑会通过随机大规模实时IP来灵活地将杂散信号作为随机噪声处理,这些噪声会导致在到达预期目标的途中消失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号