...
首页> 外文期刊>Acta astronautica >Particle swarm optimization of ascent trajectories of multistage launch vehicles
【24h】

Particle swarm optimization of ascent trajectories of multistage launch vehicles

机译:多级运载火箭上升轨迹的粒子群优化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Multistage launch vehicles are commonly employed to place spacecraft and satellites in their operational orbits. If the rocket characteristics are specified, the optimization of its ascending trajectory consists of determining the optimal control law that leads to maximizing the final mass at orbit injection. The numerical solution of a similar problem is not trivial and has been pursued with different methods, for decades. This paper is concerned with an original approach based on the joint use of swarming theory and the necessary conditions for optimality. The particle swarm optimization technique represents a heuristic population-based optimization method inspired by the natural motion of bird flocks. Each individual (or particle) that composes the swarm corresponds to a solution of the problem and is associated with a position and a velocity vector. The formula for velocity updating is the core of the method and is composed of three terms with stochastic weights. As a result, the population migrates toward different regions of the search space taking advantage of the mechanism of information sharing that affects the overall swarm dynamics. At the end of the process the best particle is selected and corresponds to the optimal solution to the problem of interest. In this work the three-dimensional trajectory of the multistage rocket is assumed to be composed of four arcs: (ⅰ) first stage propulsion, (ⅱ) second stage propulsion, (ⅲ) coast arc (after release of the second stage), and (ⅳ) third stage propulsion. The Euler-Lagrange equations and the Pontryagin minimum principle, in conjunction with the Weierstrass-Erdmann corner conditions, are employed to express the thrust angles as functions of the adjoint variables conjugate to the dynamics equations. The use of these analytical conditions coming from the calculus of variations leads to obtaining the overall rocket dynamics as a function of seven parameters only, namely the unknown values of the initial state and restate components, the coast duration, and the upper stage thrust duration. In addition, a simple approach is introduced and successfully applied with the purpose of satisfying exactly the path constraint related to the maximum dynamical pressure in the atmospheric phase. The basic version of the swarming technique, which is used in this research, is extremely simple and easy to program. Nevertheless, the algorithm proves to be capable of yielding the optimal rocket trajectory with a very satisfactory numerical accuracy.
机译:通常使用多级运载火箭将航天器和卫星放置在其运行轨道上。如果指定了火箭的特性,则其上升轨迹的优化包括确定导致轨道注入时最终质量最大化的最佳控制律。类似问题的数值解决方案并非微不足道,几十年来一直采用不同的方法进行研究。本文关注的是一种基于群体算法和最优性必要条件的联合使用的原始方法。粒子群优化技术代表了一种启发式的基于种群的优化方法,该方法受鸟群的自然运动启发。组成群的每个个体(或粒子)都对应于问题的解决方案,并且与位置和速度矢量相关联。速度更新的公式是该方法的核心,由具有随机权重的三个项组成。结果,种群利用影响整个群体动态的信息共享机制向搜索空间的不同区域迁移。在该过程的最后,选择最佳粒子并对应于所关注问题的最佳解决方案。在这项工作中,假设多级火箭的三维轨迹由四个弧组成:(ⅰ)第一级推进,(ⅱ)第二级推进,(ⅲ)海岸弧(在释放第二级之后),以及(ⅳ)第三阶段推进。将Euler-Lagrange方程和Pontryagin最小原理与Weierstrass-Erdmann拐角条件结合起来,将推力角表示为与动力学方程共轭的伴随变量的函数。这些来自变化演算的分析条件的使用导致获得的总体火箭动力学仅是七个参数的函数,即初始状态和恢复状态分量的未知值,滑行时间和上推力时间。另外,引入一种简单的方法并且成功地应用了该方法,以精确地满足与大气阶段的最大动压有关的路径约束。在这项研究中使用的群集技术的基本版本极其简单且易于编程。然而,该算法被证明能够以非常令人满意的数值精度产生最优火箭轨迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号