...
首页> 外文期刊>Acta astronautica >Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures
【24h】

Adaptive bimaterial lattices to mitigate thermal expansion mismatch stresses in satellite structures

机译:自适应双材料晶格,可减轻卫星结构中的热膨胀失配应力

获取原文
获取原文并翻译 | 示例

摘要

Earth-orbiting satellites regularly pass from sunlight to shade and back; these transitions are typically accompanied by significant temperature changes. When adjoining parts of a satellite that are made of different materials are subjected to large temperature changes, thermal mismatch stresses arise that are a function of the temperature change and the difference in coefficients of thermal expansion (CTEs) between the two materials. These thermal stresses are linked to undesirable deformation and, through long-term cycling, fatigue and failure of the structure. This paper describes a type of anisotropic lattice that can serve as a stress-free adaptor between two materials, eliminating thermal mismatch stresses and their concomitant consequences. The lattices consist of planar nonidentical anisotropic bimaterial cells, each designed based on a virtual triangle. Physically the cells consist of a triangle made of material with higher CTE surrounded by a hexagon made of material with lower CTE. Different skew angles of the hexagon make a particular cell and the whole lattice anisotropic. The cells can be designed and combined in a lattice in such a way that one edge of the lattice has CTE that coincides with the CTE of the first part of the structure (substrate 1), while the other edge of the lattice has CTE equal to the CTE of the second part of the structure (substrate 2). If all joints between the parts of each cell, neighbouring cells, and the lattice and the substrates are pinned, the whole structure will be free of thermal stresses. This paper will discuss the fundamental principles governing such lattices, their refinement for special circumstances, and opportunities for improving the structural performance of the lattices. This will be presented coupled to a rational strategy for lattice design. (C) 2015 IAA. Published by Elsevier Ltd. All rights reserved.
机译:绕地球运行的卫星通常会从阳光直射到阴影下并返回。这些转变通常伴随着明显的温度变化。当由不同材料制成的卫星的相邻部分经受较大的温度变化时,会出现热失配应力,该应力是温度变化和两种材料之间的热膨胀系数(CTE)之差的函数。这些热应力会导致不良的变形,并通过长期循环而导致结构疲劳和破坏。本文介绍了一种各向异性晶格,它可以用作两种材料之间的无应力适配器,从而消除了热失配应力及其伴随的后果。晶格由平面不同的各向异性双材料单元组成,每个单元均基于虚拟三角形进行设计。从物理上讲,电池由CTE较高的材料制成的三角形和CTE较低的材料制成的六角形包围。六边形的不同偏斜角使特定的单元格与整个晶格各向异性。可以将单元设计和组合成一个网格,以使网格的一个边缘的CTE与结构的第一部分(基板1)的CTE一致,而另一边缘的CTE等于结构第二部分(基板2)的CTE。如果每个单元,相邻单元以及晶格和基板的各个部分之间的所有接头都被钉扎,则整个结构将没有热应力。本文将讨论控制此类晶格的基本原理,在特殊情况下的改进以及改善晶格结构性能的机会。这将与晶格设计的合理策略相结合。 (C)2015年IAA。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号