首页> 外文期刊>Asia-Pacific journal of atmospheric sciences >Examination of physical processes of convective cell evolved from a MCS - Using a different model initialization
【24h】

Examination of physical processes of convective cell evolved from a MCS - Using a different model initialization

机译:检查从MCS演化而来的对流细胞的物理过程-使用不同的模型初始化

获取原文
获取原文并翻译 | 示例
       

摘要

The present study is focused on examination of the physical processes of convective cell evolved from a MCS occurred on 4 November 2011 over Genoa, Italy. The Quantitative Precipitation Forecasts (QPF) have been performed using WRF v3.6 model under different configurations and cloud permitting simulations. The results indicate underestimation of the amount of precipitation and spatial displacement of the area with a peak 24-h accumulated rainfall in (mm). Our main objective in the research is to test the cloud model ability and performance in simulation of this particular case. For that purpose a set of sensitivity experiments under different model initializations and initial data have been conducted. The results also indicate that the merging process apparently alters the physical processes through low- and middle-level forcing, increasing cloud depth, and enhancing convection. The examination of the microphysical process simulated by the model indicates that dominant production terms are the accretion of rain by graupel and snow, probabilistic freezing of rain to form graupel and dry and wet growth of graupel. Experiment under WRF v3.6 model initialization has shown some advantage in simulation of the physical processes responsible for production and initiation of heavy rainfall compared to other model runs. Most of the precipitation came from ice-phase particles-via accretion processes and the graupel melting at temperature T-0 a parts per thousand yen 0A degrees C. The rainfall intensity and accumulated rainfall calculated by the model closely reflect the amount of rainfall recorded. Thus, the main benefit is to better resolve convective showers or storms which, in extreme cases, can give rise to major flooding events. In such a way, this model may become major contributor to improvements in weather analysis and small-scale atmospheric predictions and early warnings of such subscale processes.
机译:本研究的重点是检查2011年11月4日在意大利热那亚发生的MCS产生的对流细胞的物理过程。使用WRF v3.6模型在不同的配置和云许可模拟下执行了定量降水预报(QPF)。结果表明,该地区的降水量和空间位移被低估,而24小时的累积降雨峰值以(mm)为单位。我们在研究中的主要目标是在模拟这种特殊情况下测试云模型的能力和性能。为此,已经进行了一组在不同模型初始化和初始数据下的敏感性实验。结果还表明,合并过程显然通过低层和中层强迫,增加云层深度和增强对流来改变物理过程。对模型模拟的微物理过程的检验表明,主要的生产条件是gra和雪积聚雨,降雨冻结形成gra的概率以及gra的干湿生长。与其他模型运行相比,在WRF v3.6模型初始化下进行的实验已显示出在模拟负责大量降雨产生和引发的物理过程中的某些优势。大部分降水来自冰期颗粒,通过增生过程,the在温度T-0融化,每千日元0A摄氏度。该模型计算的降雨强度和累积降雨紧密反映了所记录的降雨量。因此,主要好处是可以更好地解决对流骤雨或暴风雨,在极端情况下,这可能会引发重大洪水事件。以这种方式,该模型可能成为改进天气分析和小规模大气预测以及此类子尺度过程的早期预警的主要贡献者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号