...
首页> 外文期刊>ASHRAE Transactions >HVAC System Air Leakage Requirements for Deep Energy Retrofit Projects
【24h】

HVAC System Air Leakage Requirements for Deep Energy Retrofit Projects

机译:HVAC系统泄漏深度能源改装项目的要求

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

One of the major outcomes of the recently completed International Energy Agency (IEA) Energy and Buildings and Communities (EBC) Annex 61 "Business and Technical Concepts for Deep Energy Retrofit in Public Buildings " is a Technical Guide (EBC 2017a) that contains a list of core energy efficiency technologies generated from the results of case studies (EBC 2017b), from surveys and discussions conducted at the ASHRAE Technical Committee (TC) 7.6, "Federal Buildings " working group meetings in 2013 and 2014, and from previous experience and research conducted by the EBC Annex 61 team members. These technologies, when applied together (as a bundle), will reduce total building site energy use by about 50% (including plug loads). Technical characteristics of these building retrofit technologies, grouped into a core technologies bundle, have been studied through modeling and life cycle cost (LCC) analysis for representative national climate conditions. Among these technologies are those related to the building envelope; lighting; and heating, ventilating, and air-conditioning (HVAC) systems. When a building undergoes a deep energy retrofit (DER) that is conducted as part of a major renovation project, the duct system is usually replaced. Replacing it with a well-insulated and airtight system is one of the most cost-effective energy efficiency measures available. One reason is that the airflows through air-handling units (AHUs) connected to ducts must be sufficient to compensate for air leakage involving ducts and duct-mounted components (HVAC system air leakage). These AHU airflows account for a large fraction of the energy use in buildings. For example, in the United States, HVAC system air leakage is ranked as the primary source of energy inefficiency in commercial buildings; it wasted an estimated $2.9 billion in 2005 (Mills 2009). Based on research results and experience from the United States and around the world (especially in Scandinavia), this paper provides recommendations on cost-effective targets for ductwork airtightness and a quality assurance process for achieving these targets.
机译:最近完成的国际能源机构(IEA)能源和建筑物和社区(EBC)附件61“在公共建筑中的深度能源改造的业务和技术概念”之一是一个包含名单的技术指南(EBC 2017A)从案例研究结果(EBC 2017B)的核心能效技术,从Ashrae技术委员会(TC)7.6,“联邦建筑”工作组会议于2013年和2014年,以及以前的经验和研究由EBC附件61团队成员进行。当应用(作为捆绑包装)时,这些技术将减少总建筑工地能源使用约50%(包括插头负载)。通过建模和生命周期成本(LCC)分析,对这些建筑改造技术的技术特征进行了分组成核心技术捆绑,以代表性国家气候条件的建模和生命周期成本(LCC)分析研究。这些技术是与建筑信封相关的技术;灯光;和加热,通风和空调(HVAC)系统。当建筑物经历作为主要装修项目的一部分进行的深度能量改造(DER)时,通常会更换管道系统。用绝缘绝缘和气密系统更换它是最具成本效益的能效措施之一。一个原因是通过连接到管道的空气处理单元(Ahus)的气流必须足以补偿涉及管道和管道安装部件(HVAC系统空气泄漏)的空气泄漏。这些AHU气流占建筑物中的大部分能源。例如,在美国,HVAC系统空气泄漏被排名为商业建筑的主要能源效率源;它于2005年浪费了估计的29亿美元(Mills 2009)。根据美国和世界各地的研究成果和经验(特别是在斯堪的纳维亚州),提出了关于导管气密性的成本效益目标的建议,以及实现这些目标的质量保证程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号