首页> 外文期刊>Archive of Applied Mechanics >The area contraction and expansion for a nano-void under four different kinds of loading
【24h】

The area contraction and expansion for a nano-void under four different kinds of loading

机译:四种不同载荷下纳米空隙的面积收缩和膨胀

获取原文
获取原文并翻译 | 示例
           

摘要

This paper provides an explanation for the authors' recent conclusions as why the M-integral could be negative for a nano-void (hole) in elastic materials under tensile, bi-axes tensile, and bi-axes tensile-compress loadings (Hui T, Chen YH, in ASME J Appl Mech 77:021019-1-9, 2009; 024505-1-5, 2009). Attention is focused on whether the area of the nano-void under each of four different kinds of loading is contractive when compared to the original geometrical area without loading. The four kinds of loading are as follows: (1) simple tensile loading; (2) bi-axes tensile loading; (3) bi-axes tensile-compression loading; and (4) purely shear loading. It is concluded that, unlike those for a macro/micro hole, the area of the nano-void under relatively lower amplitude of the loadings (1) and (2) is always smaller than the original area of the same void before loading. This reduction in the nano-void area is induced from the surface effect including the surface tension and the surface Lame constants along the nano-void rim. Thus, these two kinds of loading can either decrease or increase the nano-void area depending on the amplitude of the loading. Under a relatively lower tensile loading, the area contraction occurs but not always corresponding to the negative value of the M-integral, whereas under a relatively higher tensile loading, the area expansion occurs but not always corresponding to the positive value of the A/-integral. This again verifies that the positive value of the M-integral does not always correspond to the energy release due to the nano-hole expansion, rather, the area contraction might yield the energy release either. Under bi-axes tensile compression or purely shear loading, this feature disappears.
机译:本文为作者的最新结论提供了解释,即为什么在拉伸,双轴拉伸和双轴拉伸-压缩载荷下,弹性材料中的纳米空隙(孔)的M积分可能为负值(Hui T (Chen YH,ASME J Appl Mech 77:021019-1-9,2009; 024505-1-5,2009)。与没有载荷的原始几何面积相比,注意力集中在四种不同载荷下的纳米空隙区域是否收缩。四种载荷如下:(1)简单拉伸载荷; (2)双轴拉伸载荷; (3)双轴拉伸压缩载荷; (4)纯剪切载荷。得出的结论是,与宏观/微观孔不同,纳米空隙的面积在相对较低的荷载(1)和(2)振幅下始终小于荷载之前相同空隙的原始面积。纳米空隙区域的这种减小是由沿纳米空隙边缘的表面效应(包括表面张力和表面Lame常数)引起的。因此,取决于负载的幅度,这两种负载可以减小或增大纳米空隙面积。在相对较低的拉伸载荷下,会发生面积收缩,但并不总是与M积分的负值相对应;而在相对较高的拉伸载荷下,会发生面积膨胀,但并不总是与A /-的正值相对应。积分。这再次验证了M积分的正值并不总是对应于由于纳米孔扩展而产生的能量释放,而是面积收缩也可能导致能量释放。在双轴拉伸压缩或纯剪切载荷下,此功能消失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号