...
首页> 外文期刊>Archive of Applied Mechanics >Thermomechanics of solids with general imperfect coherent interfaces
【24h】

Thermomechanics of solids with general imperfect coherent interfaces

机译:具有不完善的相干界面的固体的热力学

获取原文
获取原文并翻译 | 示例
           

摘要

The objective of this contribution is to develop a thermodynamically consistent theory for general imperfect coherent interfaces in view of their thermomechanical behavior and to establish a unified computational framework to model all classes of such interfaces using the finite element method. Conventionally, imperfect interfaces with respect to their thermal behavior are often restricted to being either highly conducting (HC) or lowly conducting (LC) also known as Kapitza. The interface model here is general imperfect in the sense that it allows for a jump of the temperature as well as for a jump of the normal heat flux across the interface. Clearly, in extreme cases, the current model simplifies to HC and LC interfaces. A new characteristic of the general imperfect interface is that the interface temperature is an independent degree of freedom and, in general, is not a function of only temperatures across the interface. The interface temperature, however, must be computed using a new interface material parameter, i.e., the sensitivity. It is shown that according to the second law, the interface temperature may not necessarily be the average of (or even between) the temperatures across the interface. In particular, even if the temperature jump at the interface vanishes, the interface temperature may be different from the temperatures across the interface. This finding allows for a better, and somewhat novel, understanding of HC interfaces. That is, a HC interface implies, but is not implied by, the vanishing temperature jump across the interface. The problem is formulated such that all types of interfaces are derived from a general imperfect interface model, and therefore, we establish a unified finite element framework to model all classes of interfaces for general transient problems. Full details of the novel numerical scheme are provided. Key features of the problem are then elucidated via a series of three-dimensional numerical examples. Finally, we recall since the influence of interfaces on the overall response of a body increases as the scale of the problem decreases, this contribution has certain applications to nano-composites and also thermal interface materials.
机译:该贡献的目的是针对通用不完善的相干界面的热力学行为,开发一种热力学一致的理论,并建立一个统一的计算框架,以使用有限元方法对此类界面的所有类别进行建模。常规上,关于其热行为的不完美界面通常被限制为高导电(HC)或低导电(LC),也称为Kapitza。这里的界面模型是不完善的,因为它既允许温度跃变,也可以允许整个界面的正常热通量跃变。显然,在极端情况下,当前模型可简化为HC和LC接口。普通不完​​美界面的新特征是界面温度是独立的自由度,并且通常不只是界面温度的函数。但是,必须使用新的界面材料参数即灵敏度来计算界面温度。结果表明,根据第二定律,界面温度可能不一定是界面温度的平均值(甚至之间)。特别是,即使界面处的温度跃升消失,界面温度也可能与界面上的温度不同。这一发现使人们对HC接口有了更好的理解。也就是说,HC界面暗示但不暗示跨越界面的温度消失。制定问题的方式是,所有类型的接口都从通用的不完美接口模型派生而来,因此,我们建立了一个统一的有限元框架,为通用瞬态问题的所有类型的接口建模。提供了新颖的数值方案的全部细节。然后通过一系列三维数值示例阐明了问题的关键特征。最后,我们回想起由于界面对人体整体响应的影响随着问题规模的减小而增加,因此这种贡献在纳米复合材料以及热界面材料中都有一定的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号