首页> 外文期刊>Aquatic Geochemistry >Global Nitrogen Cycle: Pre-Anthropocene Mass and Isotope Fluxes and the Effects of Human Perturbations
【24h】

Global Nitrogen Cycle: Pre-Anthropocene Mass and Isotope Fluxes and the Effects of Human Perturbations

机译:全球氮循环:人类世前的质量和同位素通量以及人类摄动的影响

获取原文
获取原文并翻译 | 示例
       

摘要

We present a nitrogen cycle model for pre-industrial times based on an extensive literature database. The model consists of 18 reservoirs in the domains of the atmosphere, land, and ocean. The biotic reservoirs on land and in the ocean (N-fixing plants, non-N-fixing plants, and marine biota) interact with atmospheric N2 and dissolved inorganic nitrogen (DIN, consisting of N2, NO3 −, and NH4 +) in the ocean and soil waters. Marine DIN is taken up by marine biota and transformed from ocean particulate organic matter to dissolved organic nitrogen and the ocean sediment. The atmosphere, the largest nitrogen reservoir, supplies N2 to the system by N fixation, deposition, and dissolution, and these input fluxes are balanced by denitrification and volatilization back to the atmosphere. The land and ocean domains are linked by river transport, which carries both dissolved and particulate nitrogen to the oceanic coastal zone. The isotope–mass balances of the N reservoirs are calculated from the isotopic composition of the reservoirs and the fractionation factors accompanying the fluxes between the reservoirs based on reported values from different natural conditions. The model sensitivity was tested for different biouptake rates and was run with various human perturbations, including fertilization, nitrous oxide emissions, population-related sewage disposal, land-use changes, and temperature-dependent rate kinetics. The new N mass–isotope cycle model provides the basis for assessment of the impact of artificial fertilization between 1700 and 2050. The perturbation experiments in this study suggest that land-use change is the key factor altering the N mass cycle since industrialization.
机译:我们基于广泛的文献数据库,为工业化前的时间提供了氮循环模型。该模型由位于大气,陆地和海洋领域的18个储层组成。陆地和海洋中的生物储库(固氮植物,非固氮植物和海洋生物区系)与大气中的氮和溶解的无机氮(DIN,由N2,NO3-和NH4 +组成)相互作用。海洋和土壤水域。海洋DIN被海洋生物区系吸收,并从海洋颗粒有机物转变为溶解的有机氮和海洋沉积物。大气中最大的氮库通过固氮,沉积和溶解将N2供应给系统,这些输入通量通过反硝化和挥发回到大气中来平衡。陆地和海洋领域通过河流运输相连,河流将溶解的氮和颗粒氮运到海洋沿海地区。根据不同自然条件下的报告值,根据储集层的同位素组成和伴随储集层之间通量的分馏因子,可以计算出N个储集层的同位素-质量平衡。测试了模型灵敏度对不同生物摄取率的影响,并在各种人为干扰下进行了试验,包括施肥,一氧化二氮排放,与人口有关的污水处理,土地利用变化以及温度依赖性速率动力学。新的氮-同位素循环模型为评估1700年至2050年间人工施肥的影响提供了基础。本研究中的扰动实验表明,土地利用变化是工业化以来改变氮素质量循环的关键因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号