首页> 外文期刊>Applied Surface Science >Thermal transport at 6H-SiC/graphene buffer layer/GaN heterogeneous interface
【24h】

Thermal transport at 6H-SiC/graphene buffer layer/GaN heterogeneous interface

机译:6H-SiC /石墨烯缓冲层/ GaN异构界面的热传输

获取原文
获取原文并翻译 | 示例
       

摘要

We investigate the epitaxial growth of graphene on SiC and thermal transport at 6H-SiC/graphene buffer layer/ GaN heterogeneous interface. Under Tersoff-Erhart-Albe potential (TEA) and environment-dependent interatomic potential (EDIP), graphene buffer layer (GBL) is epitaxially grown by simulated annealing method, and simulations show that TEA potential is superior to EDIP potential by evaluation of nucleation temperature, radial distribution function, average atomic binding energy, atomic structure and bond length. Further, by thermal relaxation method, single-vacancy defects in graphene can reduce interface thermal resistance (ITR) at 6H-SiC/ GBL/GaN heterogeneous interface with maximum reduction of 9.6%, meaning that ITR can be reduced by defect engineering. In addition, with the increase of nucleation areas, especially the bonding of different nucleation zones, ITR also has a highest decline of 17.9%, and energy is easier to pass through the interface, illustrating the importance of graphene integrity for interfacial heat transfer. At last, the increase in temperature (300 K to 1100 K) results in a maximum 19.6% decrease in ITR, indicating that ITR is sensitive to temperature. The selection of potential and the analysis of the heat transfer of the three-materials heterogeneous interface contribute to thermal design of graphene-based semiconductor devices.
机译:我们在6H-SiC /石墨烯缓冲层/ GaN异构界面上探讨石墨烯对SiC和热传输的外延生长。在Tersoff-Erhart-Albe潜在(茶)和环境依赖的内部潜力(EDIP)下,通过模拟的退火方法外延生长石墨烯缓冲层(GBL),并且模拟表明通过评估成核温度,茶势优于EDIP电位,径向分布函数,平均原子结合能,原子结构和键长。此外,通过热弛豫方法,石墨烯中的单空位缺陷可以在6H-SiC / GBL / GaN异构界面下减少界面热阻(ITR),最大降低为9.6%,这意味着ITR可以通过缺陷工程减少。此外,随着成核区域的增加,尤其是不同成核区的粘合,ITR也具有最高下降17.9%,而且能量更容易通过界面,说明石墨烯完整性对界面传热的重要性。最后,温度的增加(300k至1100 k)导致ITR的最大减少最大为19.6%,表明ITR对温度敏感。潜力的选择和分析三种非均相界面的传热有助于石墨烯基半导体器件的热设计。

著录项

  • 来源
    《Applied Surface Science》 |2021年第15期|147828.1-147828.10|共10页
  • 作者单位

    Jiangsu Univ Lab Adv Design Mfg & Reliabil MEMS NEMS OEDS Zhenjiang 212013 Jiangsu Peoples R China;

    Jiangsu Univ Lab Adv Design Mfg & Reliabil MEMS NEMS OEDS Zhenjiang 212013 Jiangsu Peoples R China|Texas A&M Univ Dept Mat Sci & Engn Coll Engn College Stn TX 77843 USA;

    Jiangsu Univ Lab Adv Design Mfg & Reliabil MEMS NEMS OEDS Zhenjiang 212013 Jiangsu Peoples R China;

    Mem Univ Newfoundland Fac Engn & Appl Sci St John NF Canada;

    Jiangsu Univ Lab Adv Design Mfg & Reliabil MEMS NEMS OEDS Zhenjiang 212013 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Graphene buffer layer; 6H-SiC; Epitaxial growth; GaN; Thermal transport;

    机译:石墨烯缓冲层;6H-SIC;外延生长;GaN;热运输;
  • 入库时间 2022-08-18 22:16:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号