...
首页> 外文期刊>Applied Surface Science >Lithium and sodium decorated graphdiyne as a candidate for hydrogen storage: First-principles and grand canonical Monte Carlo study
【24h】

Lithium and sodium decorated graphdiyne as a candidate for hydrogen storage: First-principles and grand canonical Monte Carlo study

机译:锂和钠装饰了Graphdiyne作为储氢的候选者:一原则和大规范蒙特卡罗学习

获取原文
获取原文并翻译 | 示例
           

摘要

Here through doping Boron element in the aromatic ring of the graphdiyne, we demonstrate that the preferred adsorption site for Li and Na can be changed effectively. For double side Li and Na decorations on the Boron-doped aromatic ring, the binding energies are 2.35 eV and 1.65 eV, which are much larger than their own bulk cohesive energies of1.63 eV and 1.13 eV respectively, indicating that Li and Na atoms will be dispersed evenly on the graphdiyne instead of forming metal clusters. We further investigate H-2 storage by using first-principles method. It is found that the average binding energies for Li- and Na-decorated boron-graphdiyne structure with 5 adsorbed H-2 molecules per metal, are all in the optimum adsorption energy range (0.2-0.4 eV), which are 0.33, 0.31, 0.29, 0.24 and 0.21 eV for Li-decoration and 0.26, 0.26, 0.26, 0.24 and 0.22 for Na-decoration. Moreover, the molecular dynamics calculations demonstrate our structures are thermodynamic stable under realistic experimental condition. The estimated H-2 uptake capacities could reach to 8.81 wt% for Li-decoration and 7.73 wt % for Na-decoration. Finally, we fitted the force field parameters and performed the grand canonical Monte Carlo simulations to address the H-2 uptake capacity.
机译:这里通过掺杂硼元件在石墨尼的芳环中,我们证明了Li和Na的优选吸附位点可以有效地改变。对于硼掺杂芳香环上的双面李和NA装饰,粘合能量为2.35eV和1.65eV,比其自身散聚能量分别为1.63eV和1.13eV,表明李和NA原子分别大得多。将均匀地分散在图形上,而不是形成金属簇。我们进一步通过使用第一原理方法来研究H-2存储。结果发现,Li-和Na装饰的硼图霉属结构的平均结合能量为每金金属的5个吸附的H-2分子,全部在最佳吸附能量范围内(0.2-0.4eV),为0.33,0.31, LI装饰0.29,0.24和0.21eV,为NA装饰0.26,0.26,0.26,0.24和0.22。此外,分子动力学计算证明我们的结构在现实实验条件下是热力学稳定的。估计的H-2摄取能力可达到LI装饰的8.81wt%,为NA装饰7.73wt%。最后,我们拟合了力场参数,并进行了大规范蒙特卡罗模拟,以解决H-2摄取容量。

著录项

  • 来源
    《Applied Surface Science》 |2020年第15期|144855.1-144855.8|共8页
  • 作者单位

    Nanjing Univ Posts & Telecommun Informat Phys Res Ctr Sch Sci New Energy Technol Engn Lab Jiangsu Prov Nanjing 210023 Peoples R China|Nanjing Univ Sci & Technol Dept Appl Phys Nanjing 210094 Peoples R China;

    Nanjing Univ Sci & Technol Dept Appl Phys Nanjing 210094 Peoples R China;

    Nanjing Univ Posts & Telecommun Informat Phys Res Ctr Sch Sci New Energy Technol Engn Lab Jiangsu Prov Nanjing 210023 Peoples R China;

    Nanjing Univ Posts & Telecommun Informat Phys Res Ctr Sch Sci New Energy Technol Engn Lab Jiangsu Prov Nanjing 210023 Peoples R China;

    Nanjing Univ Posts & Telecommun Informat Phys Res Ctr Sch Sci New Energy Technol Engn Lab Jiangsu Prov Nanjing 210023 Peoples R China;

    Nanjing Univ Posts & Telecommun Informat Phys Res Ctr Sch Sci New Energy Technol Engn Lab Jiangsu Prov Nanjing 210023 Peoples R China;

    Nanjing Univ Posts & Telecommun Informat Phys Res Ctr Sch Sci New Energy Technol Engn Lab Jiangsu Prov Nanjing 210023 Peoples R China;

    Nanjing Univ Posts & Telecommun Informat Phys Res Ctr Sch Sci New Energy Technol Engn Lab Jiangsu Prov Nanjing 210023 Peoples R China;

    Nanjing Univ Sci & Technol Dept Appl Phys Nanjing 210094 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydrogen storage; First-principles calculations; Graphdiyne; Grand canonical Monte Carlo simulations;

    机译:氢气储存;第一原理计算;Grampdiyne;Grand Canonical Monte Carlo模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号