...
首页> 外文期刊>Applied Surface Science >Tailoring electronic and optical parameters of bilayer graphene through boron and nitrogen atom co-substitution; an ab-initio study
【24h】

Tailoring electronic and optical parameters of bilayer graphene through boron and nitrogen atom co-substitution; an ab-initio study

机译:通过硼和氮原子共取代来调节双层石墨烯的电子和光学参数;从头开始研究

获取原文
获取原文并翻译 | 示例

摘要

Bilayer graphene (BLG) system substituted with boron (B) and nitrogen (N) atoms of different concentration is investigated in this study using first-principles study density functional theory (FPS-DFT). The effects of B/N impurity co-substitution on electronic and optical behaviors of BLG are systematically studied. The band gap of pure BLG obtained during this study agrees well with previous experimental studies. Formation energies for B/N co-doped BLG systems indicate that the, impurity substitution process in BLG is exothermic and stable B/N atom-doped BLG systems can be realized experimentally. Charge difference calculations suggest that, the dopant B and N atoms placed in different layers of BLG, try to deplete the electrons in the space between graphene layers and the charge density is localized at the dopant sites. It is discovered through electronic parameters that, individual B/N substitution in BLG, moves Dirac cone into conduction/valence bands, while providing a limited energy gap at the Dirac point. On the other hand, when B/N impurities are placed in BLG, lattice symmetry of BLG breaks, dispersion relation near the Fermi level (E-F) is disturbed and a fixed energy gap emerges in its electronic structure. BLG optical parameters contain same profile as that of SLG, except that all the parameters show increased intensities. When B/N atoms are co-doped in BLG, the absorption spectra is improved in low electron energy range and higher static reflectivity is observed. From the results generated during this study, it can be generalized that B/N atoms can be considered as ideal doping impurities for BLG systems, as they not only produce stable and functional BLG systems, but also preserve the intrinsic properties of graphene material. Further experimental studies can be performed on the systems discussed in this work, in order to synthesize multilayer graphene systems; those are functional for nano/opto electronic device applications.
机译:本研究使用第一性原理研究密度泛函理论(FPS-DFT)研究了被不同浓度的硼(B)和氮(N)原子取代的双层石墨烯(BLG)系统。系统研究了B / N杂质共取代对BLG电子和光学行为的影响。在这项研究中获得的纯BLG的带隙与以前的实验研究非常吻合。 B / N共掺杂BLG系统的形成能表明,BLG中的杂质取代过程是放热的,可以通过实验实现稳定的B / N原子掺杂BLG系统。电荷差的计算表明,位于BLG不同层中的掺杂物B和N原子试图耗尽石墨烯层之间空间中的电子,并且电荷密度位于掺杂物位置。通过电子参数发现,BLG中的单个B / N取代使Dirac锥进入导带/价带,同时在Dirac点提供了有限的能隙。另一方面,当将B / N杂质置于BLG中时,BLG的晶格对称性破裂,费米能级(E-F)附近的色散关系受到干扰,并且在其电子结构中出现了固定的能隙。除了所有参数显示出增加的强度外,BLG光学参数包含与SLG相同的轮廓。当在BLG中共掺杂B / N原子时,在低电子能量范围内吸收光谱得到改善,并且观察到较高的静态反射率。从这项研究过程中产生的结果可以得出结论,可以将B / N原子视为BLG系统的理想掺杂杂质,因为它们不仅可以产生稳定且功能正常的BLG系统,而且可以保留石墨烯材料的固有特性。为了合成多层石墨烯系统,可以对本文讨论的系统进行进一步的实验研究。这些功能可用于纳米/光电子设备应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号