...
首页> 外文期刊>Applied Surface Science >Hierarchical TiO_2@In_2O_3 heteroarchitecture photoanodes: Mechanistic study on interfacial charge carrier dynamics through water splitting and organic decomposition
【24h】

Hierarchical TiO_2@In_2O_3 heteroarchitecture photoanodes: Mechanistic study on interfacial charge carrier dynamics through water splitting and organic decomposition

机译:分层TiO_2 @ In_2O_3异质结构光阳极:通过水分解和有机分解的界面电荷载体动力学的机理研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, we have synthesized hierarchical TiO2@In2O3 heteroarchitecture photoanodes via a hydrothermal method and studied their interfacial charge carrier dynamics through water splitting and organic decomposition. Photoelectrochemical measurements show that the IN-0.4 exhibits an obvious enhancement in photocurrent density compared to the pristine TiO2. Electrochemical impendence spectroscopy (EIS) and Time-resolved photoluminescence (PL) have been employed to study the charge recombination in TiO2@In2O3 nanostructure. The surface passivation of TiO2 nanorods (NRs) with In2O3 nanostructures helps to the suppression of the surface defects. The surface-passivated photoanode (IN-0.4) has demonstrated the improved hydrogen generation activity (125 mu mol.h(-1)) of TiO2 nanorods (NRs) with In2O3 nanostructures during water splitting and organic decomposition. The probable causes of the enhancement in hydrogen evolution could be due to (i) enhanced photogenerated electron transport (ii) increased active surface area with In2O3 and/or (iii) catalytic activity of In2O3. Moreover, the photoelectrocatalytic activities of IN-0.4 were slight affect during degradation of Bisphenol A and methyl orange dye, which might be due to the lower hole mobility in TiO2@In2O3 heteroarchitecture photoelectrodes. These sightings and proposed schematic model can help to understand the charge transfer dynamics in hierarchical TiO2@In2O3 heteroarchitecture photoelectrodes as well as designing multifaceted photoelectrodes for solar energy conversion.
机译:在这项研究中,我们通过水热法合成了分层的TiO2 @ In2O3杂结构光阳极,并通过水分解和有机分解研究了它们的界面电荷载流子动力学。光电化学测量表明,与原始TiO2相比,IN-0.4的光电流密度明显提高。电化学阻抗谱(EIS)和时间分辨光致发光(PL)已被用于研究TiO2 @ In2O3纳米结构中的电荷复合。具有In2O3纳米结构的TiO2纳米棒(NRs)的表面钝化有助于抑制表面缺陷。表面钝化的光阳极(IN-0.4)已证明在水分解和有机分解过程中具有In2O3纳米结构的TiO2纳米棒(NRs)具有更高的氢生成活性(125μmol.h(-1))。氢释放增强的可能原因可能是由于(i)光生电子传输增强(ii)具有In2O3的活性表面积增加和/或(iii)In2O3的催化活性。此外,在双酚A和甲基橙染料的降解过程中,IN-0.4的光电催化活性受到轻微影响,这可能是由于TiO2 @ In2O3异质结构光电电极的空穴迁移率较低。这些发现和提出的示意​​图模型可以帮助您了解TiO2 @ In2O3分层结构异质结构光电电极中的电荷转移动力学,以及设计用于太阳能转换的多面光电电极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号