...
首页> 外文期刊>Applied Surface Science >Study on the surface activity of t-YSZ nanomaterials by first-principles calculation
【24h】

Study on the surface activity of t-YSZ nanomaterials by first-principles calculation

机译:用第一性原理研究t-YSZ纳米材料的表面活性

获取原文
获取原文并翻译 | 示例

摘要

The internal mechanism underlying the high surface activity of t-YSZ nanomaterials composed of low Miller index facets is not completely understood at present. Using first-principles calculations, the surface energies, as well as geometrical and electronic properties of t-YSZ morphology are simulated and analyzed by conventional bulk surface and new microfacet models. The results show that the surface energies follow the trend E-surface [(0 1 0 x 0 1 0)] E-surface [(1 1 1 X 0 1 0)] E-surface [( 1 0 1 X 0 1 0)] E-surface [( 1 1 1 X 1 0 1)] E-surface [(1 0 1 x 1 0 1)] (1 1 1) bulk surface (1 0 1) bulk surface (0 1 0) bulk surface, where the surface energies of the microfacet models are several times greater than those of the bulk surfaces. The surface activity of the microfacet is therefore much more vigorous than that of the bulk surface. The very high chemical activity of the microfacets is derived from their large Fermi energy, pseudo energy gap, and change in Mulliken population. Although the low Miller index surfaces exhibit weak activity, their interface, such as [(0 1 0 x 0 1 0)], have high chemical activity, because of which they are easily and quickly corroded by CaO-MgO-Al2O3-SiO2 (CMAS), as confirmed by experimental reports. Hence, our findings can be considered a first and vital step toward understanding the unusual properties of nano-YSZ.
机译:目前尚不完全了解由低米勒指数面构成的t-YSZ纳米材料高表面活性的内在机理。使用第一性原理计算,通过常规的体表和新的微面模型对t-YSZ形貌的表面能以及几何和电子性质进行了模拟和分析。结果表明,表面能遵循趋势E-表面[(0 1 0 x 0 1 0)]> E-表面[(1 1 1 X 0 1 0)]> E-表面[(1 0 1 X 0 1 0)]> E曲面[(1 1 1 X 1 0 1)]> E曲面[(1 0 1 x 1 0 1)]>(1 1 1)块曲面>(1 0 1)块曲面>(0 1 0)体表面,其中微面模型的表面能是体表面的几倍。因此,微面的表面活性比块状表面的表面活性强得多。微刻面的极高化学活性源自其大的费米能,伪能隙和穆里肯族的变化。尽管低Miller指数表面的活性较弱,但它们的界面(例如[(0 1 0 x 0 1 0)])具有较高的化学活性,因此它们容易被CaO-MgO-Al2O3-SiO2腐蚀( CMAS),如实验报告所证实。因此,我们的发现可以被认为是理解纳米YSZ异常特性的第一步,也是至关重要的一步。

著录项

  • 来源
    《Applied Surface Science》 |2019年第31期|1072-1082|共11页
  • 作者单位

    Nanchang Hangkong Univ, Sch Mat Sci & Engn, Nanchang 330063, Jiangxi, Peoples R China;

    Nanchang Hangkong Univ, Sch Mat Sci & Engn, Nanchang 330063, Jiangxi, Peoples R China|Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China;

    Nanchang Hangkong Univ, Sch Mat Sci & Engn, Nanchang 330063, Jiangxi, Peoples R China;

    Nanchang Hangkong Univ, Sch Mat Sci & Engn, Nanchang 330063, Jiangxi, Peoples R China;

    Nanchang Hangkong Univ, Sch Mat Sci & Engn, Nanchang 330063, Jiangxi, Peoples R China;

    Sinosteel Luoyang Inst Refractories Res Co Ltd, State Key Lab Advance Refractories, Luoyang 471039, Peoples R China;

    Hunan Univ, Sch Mat Sci & Engn, Changsha 410082, Hunan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    t-YSZ nanomaterials; Surface activity; Microfacet models; First-principles calculation;

    机译:t-YSZ纳米材料表面活性微观模型第一性原理计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号