首页> 外文期刊>Applied Surface Science >Catalytic conversion of NO assisted by plasma over Mn-Ce/ZSM5-multi-walled carbon nanotubes composites: Investigation of acidity, activity and stability of catalyst in the synergic system
【24h】

Catalytic conversion of NO assisted by plasma over Mn-Ce/ZSM5-multi-walled carbon nanotubes composites: Investigation of acidity, activity and stability of catalyst in the synergic system

机译:Mn-Ce / ZSM5-多壁碳纳米管复合材料上等离子体辅助的NO催化转化:协同体系中催化剂的酸度,活性和稳定性研究

获取原文
获取原文并翻译 | 示例
           

摘要

Mn-Ce/ZSM5-MWCNTs (MWCNTs, multi-walled carbon nanotubes) catalysts were synthesized via an impregnation method to study NO conversion and sulfur resistance with the assistance of plasma. The reaction proceeded excellently at ambient temperature by using bimetallic manganese-cerium as active component, exhibited superior nitric oxide removal efficiency (around 90%) and turnover frequency at relatively low input energy; XRD, BET, TPD, XPS and in-situ FTIR investigations showed that the highly oxidizing environment, interaction of physicochemical structure, improvement of both Lewis and Bronsted acid sites as well as acceleration of the Eley-Rideal (E-R) mechanism were responsible for this catalyst enhancement. The comparison of characterizations over fresh and spent Mn-Ce catalyst along with mechanistic analysis revealed that valence variation of Mn and Ce cations not only provide oxygen vacancies, but more importantly, directly affect the formation and consumption of Lewis acid sites in whole reaction process. Subsequently, an increased number of Lewis acid sites coordinate NH3 molecules with Mn and Ce atoms, then contribute to ammonia adsorption and rob electrons directly from gaseous NO or nitrate anions as following Eley-Rideal pathway. At last, oxidizing radicals (O, O-3) and cerium modification inhibit further speciation of ammonium and manganese sulfates species on the catalyst surface, thereby promoting low temperature catalytic activity and sulfur durability.
机译:通过浸渍法合成了Mn-Ce / ZSM5-MWCNTs(MWCNTs,多壁碳纳米管)催化剂,利用等离子体研究了NO转化率和耐硫性。通过使用双金属锰铈作为活性成分,该反应在环境温度下进行得非常好,在较低的输入能量下表现出优异的一氧化氮去除效率(约90%)和周转频率。 XRD,BET,TPD,XPS和原位FTIR研究表明,高氧化环境,物理化学结构的相互作用,路易斯和布朗斯台德酸位点的改善以及Eley-Rideal(ER)机理的加速是造成这一现象的原因。催化剂增强。对新鲜的和用过的Mn-Ce催化剂进行的表征比较以及机理分析表明,Mn和Ce阳离子的化合价变化不仅提供氧空位,而且更重要的是,在整个反应过程中直接影响路易斯酸位的形成和消耗。随后,越来越多的路易斯酸位点将NH3分子与Mn和Ce原子配位,然后促进氨吸附,并按照Eley-Rideal途径直接从气态NO或硝酸根阴离子夺电子。最后,氧化基团(O,O-3)和铈的修饰抑制了铵和硫酸锰物种在催化剂表面的进一步形成,从而提高了低温催化活性和硫的耐久性。

著录项

  • 来源
    《Applied Surface Science》 |2018年第1期|187-199|共13页
  • 作者单位

    North China Elect Power Univ, Educ Minist, Key Lab Condit Monitoring & Control Power Plant E, Beijing 102206, Peoples R China;

    North China Elect Power Univ, Educ Minist, Key Lab Condit Monitoring & Control Power Plant E, Beijing 102206, Peoples R China;

    North China Elect Power Univ, Educ Minist, Key Lab Condit Monitoring & Control Power Plant E, Beijing 102206, Peoples R China;

    North China Elect Power Univ, Educ Minist, Key Lab Condit Monitoring & Control Power Plant E, Beijing 102206, Peoples R China;

    North China Elect Power Univ, Educ Minist, Key Lab Condit Monitoring & Control Power Plant E, Beijing 102206, Peoples R China;

    North China Elect Power Univ, Educ Minist, Key Lab Condit Monitoring & Control Power Plant E, Beijing 102206, Peoples R China;

    North China Elect Power Univ, Educ Minist, Key Lab Condit Monitoring & Control Power Plant E, Beijing 102206, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Plasma; SCR catalyst; MnOx-CeOx; SO2 poisoning; Mechanism;

    机译:等离子体;SCR催化剂;MnOx-CeOx;SO2中毒;机理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号