...
首页> 外文期刊>Applied Surface Science >Vacuum chamber surface electronic properties influencing electron cloud phenomena
【24h】

Vacuum chamber surface electronic properties influencing electron cloud phenomena

机译:真空室表面电子性质影响电子云现象

获取原文
获取原文并翻译 | 示例
           

摘要

In the vacuum science community, it is now commonly accepted that, for the present and next generation of accelerators, the surface electronic properties of the vacuum chamber material have to be studied in detail. Moreover, such studies are of valuable help to define the cleaning procedures of the chosen materials and to identify the most efficient vacuum commissioning. In the case of the large hadron collider (LHC) the proton beam stability, in the presence of an electron cloud, is analysed using beam induced electron multipacting (BIEM) simulations requiring a number of surface related properties, such as photon reflectivity, electron and photon induced electron emission, heat load, etc. and their modification during machine commissioning and operation. Such simulation codes base their validity on the completeness and reliability of the aforementioned input data.In this work we describe how a surface science approach has been applied to measure, total electron yield (SEY) as well as energy distribution curves excited by a very low-energy electron beam (0-320 eV), from the industrially prepared Cu colaminated material, the adopted LHC beam-screen material, held at cryogenic temperatures (about 9 K). The data show that the SEY converges to unity at zero primary electron energy and that the ratio of reflected to secondary electrons increases for decreasing energy below about 70 eV, and becomes dominant below electron energies of about 20 eV. These observations lead to the notion of long-lived low-energy electrons in the accelerator vacuum chamber, which could be an issue for the LHC, damping rings and future accelerators. (C) 2004 Published by Elsevier B.V.
机译:在真空科学界,现在普遍接受的是,对于当前和下一代的加速器,必须详细研究真空腔室材料的表面电子特性。此外,此类研究对于定义所选材料的清洁程序并确定最有效的真空调试很有帮助。对于大型强子对撞机(LHC),使用需要大量与表面相关的特性(例如光子反射率,电子和光子感应的电子发射,热负荷等及其在机器调试和运行过程中的变化。这种模拟代码的有效性基于上述输入数据的完整性和可靠性。在这项工作中,我们描述了表面科学方法如何应用于测量,总电子产率(SEY)以及由极低能量激发的能量分布曲线-能量电子束(0-320 eV),来自工业制备的Cu镀层材料,采用的LHC束屏蔽材料,保持在低温(约9 K)下。数据表明,SEY在一次电子能量为零时会聚为一,反射电子与二次电子的比率会随着能量在约70 eV以下的降低而增加,并在约20 eV以下的电子能量下成为主导。这些观察结果导致了在加速器真空室中存在长寿命低能电子的想法,这对于大型强子对撞机,阻尼环和未来的加速器可能是一个问题。 (C)2004由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号