首页> 外文期刊>Applied Surface Science >Inelastic electron scattering and energy-selective negative ion reactions in molecular films on silicon surfaces
【24h】

Inelastic electron scattering and energy-selective negative ion reactions in molecular films on silicon surfaces

机译:硅表面分子膜中的非弹性电子散射和能量选择性负离子反应

获取原文
获取原文并翻译 | 示例
           

摘要

Careful control of plasma chemistry, particularly the negative ion production and reaction channels, could lead to nanoscale patterning, growth, and etching strategies. Since the energies of anion and electron surface collisions are relatively low ( < 10 eV) in plasmas, these interactions are essentially damage free with respect to the buried interface and subsurface region. Thus, renewed interest has arisen that takes advantage of negative ion surface chemistry in film deposition and nanopatterning. We review (ⅰ) the transient negative ion states such as shape and dissociative electron attachment resonances produced during electron molecule scattering, (ⅱ) the many body interactions and substrate-effects on the resonance energies, widths and cross sections and (ⅲ) examples of post-dissociation interactions of the reactive fragments and anions that may lead to controlled etching or growth. Specifically, we summarize past and recent studies on electron scattering with gas- and condensed-phase H_2O, CF_4, SiCl_4 and O_2 targets. We then discuss recent examples of energy selective oxidation and fiuorination of hydrogen terminated silicon surfaces and comment on the general applicability of low-energy electrons and negative ion surface chemistry in film deposition, nanopatterning and growth strategies.
机译:仔细控制等离子体化学,特别是负离子的产生和反应通道,可能会导致纳米级的图案化,生长和蚀刻策略。由于在等离子体中阴离子和电子表面碰撞的能量相对较低(<10 eV),因此这些相互作用相对于掩埋的界面和地下区域基本不受损害。因此,出现了新的兴趣,该兴趣在膜沉积和纳米图案化中利用了负离子表面化学。我们回顾(ⅰ)在电子分子散射过程中产生的瞬态负离子状态,例如形状和解离电子附着共振;(many)许多体相互作用以及底物对共振能,宽度和横截面的影响;以及(ⅲ)的例子反应性片段和阴离子的解离后相互作用可能导致受控的蚀刻或生长。具体而言,我们总结了过去和最近关于气相和凝聚相H_2O,CF_4,SiCl_4和O_2靶的电子散射的研究。然后,我们讨论氢封端的硅表面的能量选择性氧化和氟化的最新例子,并评论低能量电子和负离子表面化学在薄膜沉积,纳米图案化和生长策略中的普遍适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号