...
首页> 外文期刊>Applied Surface Science >Development of an industrial tool to make passivation layers for UV sensors improvement
【24h】

Development of an industrial tool to make passivation layers for UV sensors improvement

机译:开发用于制造钝化层以改善紫外线传感器的工业工具

获取原文
获取原文并翻译 | 示例
           

摘要

Today, the collection of generated charges is a limiting problem for the realization of UV sensors. Indeed, the native silicon oxide of the surface acts as a region of recombination centers [1]. Then, the sensors exhibit a low sensitivity in the UV wavelengths. An approach to overcome this drawback is the realization of a few nanometers thick passivation layer at the surface by creating an ultra-shallow junction (USJ) with a high activation level. The realization of such junctions requires two steps: first, the implantation of dopants which consists in introducing impurities at the surface of the substrate, then the thermal activation of these dopants to obtain the electrical characteristics of the junction. The Plasma Immersion Ion Implantation (PHI) process allows us to implant dopants in a very thin layer (10-20 nm) into the silicon substrate [2-4]. These impurities are located in interstitial sites in the silicon, and need an activation process to modify the electrical properties of the layer. The step is performed by means of an excimer laser annealing process (ELA) [5-8] to melt a very thin layer of the silicon substrate and then activate the dopants without diffusion. In the framework of the ALDIP project (Laser Activation of Dopants implanted by Plasma Immersion), IBS Company has developed with its partners a cluster to realize these two steps with industrial production rates and cleanliness. Four-point probe measurements and SIMS analyzes have been used to characterize the junctions realized with this process. We have reached a sheet resistance lower than 500 Ω/sq for a junction depth of 29 nm and an abruptness of 3 nm/dec. Nevertheless, electrical measurements on diodes have revealed a significant leakage current of around 10~(-5) A/cm~2, revealing the presence of defects inside the junction. Light Beam Induced Current (LBIC) [9-12] characterization has shown that these defects are localized at the edge of the laser beam.
机译:如今,收集电荷已成为实现UV传感器的一个限制问题。实际上,表面的天然氧化硅充当了重组中心区域[1]。然后,传感器在紫外线波长下显示出低灵敏度。克服此缺点的方法是通过创建具有高激活水平的超浅结(USJ)在表面上实现几纳米厚的钝化层。这种结的实现需要两个步骤:首先,掺杂剂的注入,其包括在衬底表面上引入杂质,然后热激活这些掺杂剂以获得结的电特性。等离子体浸没离子注入(PHI)工艺使我们能够将很薄的掺杂剂(10-20 nm)注入到硅衬底中[2-4]。这些杂质位于硅中的间隙位置,需要激活过程才能修改该层的电性能。该步骤通过准分子激光退火工艺(ELA)[5-8]进行,以熔化非常薄的硅基板层,然后激活掺杂剂而不会扩散。在ALDIP项目(通过等离子浸渍注入激光激活掺杂剂)的框架中,IBS公司与合作伙伴共同开发了一个集群,以工业生产率和清洁度实现这两个步骤。四点探针测量和SIMS分析已用于表征通过此过程实现的结。对于29 nm的结深和3 nm / dec的突变,我们已经达到了低于500Ω/ sq的薄层电阻。然而,对二极管的电学测量表明泄漏电流约为10〜(-5)A / cm〜2,这表明结内存在缺陷。光束感应电流(LBIC)[9-12]的特性表明,这些缺陷位于激光束的边缘。

著录项

  • 来源
    《Applied Surface Science》 |2012年第23期|p.9270-9273|共4页
  • 作者单位

    LP3 Laboratory, UMR 6182 CNRS - Mediterranean University, Campus de Luminy, Case 917, 13 288 Marseille Cedex 9, France,Ion Beam Services, Rue Caston Imbert Prolongee, 13 790 Peynier, France;

    LP3 Laboratory, UMR 6182 CNRS - Mediterranean University, Campus de Luminy, Case 917, 13 288 Marseille Cedex 9, France;

    LP3 Laboratory, UMR 6182 CNRS - Mediterranean University, Campus de Luminy, Case 917, 13 288 Marseille Cedex 9, France;

    LP3 Laboratory, UMR 6182 CNRS - Mediterranean University, Campus de Luminy, Case 917, 13 288 Marseille Cedex 9, France;

    LP3 Laboratory, UMR 6182 CNRS - Mediterranean University, Campus de Luminy, Case 917, 13 288 Marseille Cedex 9, France;

    Ion Beam Services, Rue Caston Imbert Prolongee, 13 790 Peynier, France;

    Ion Beam Services, Rue Caston Imbert Prolongee, 13 790 Peynier, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    excimer laser annealing; plasma immersion ion implantation; ultra shallow junctions; passivation layer; uv sensors;

    机译:准分子激光退火等离子体浸没离子注入;超浅结;钝化层紫外线传感器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号