...
首页> 外文期刊>Applied Surface Science >Molecular modeling of fibronectin adsorption on topographically nanostructured rutile (110) surfaces
【24h】

Molecular modeling of fibronectin adsorption on topographically nanostructured rutile (110) surfaces

机译:纤连蛋白在地形纳米结构金红石(110)表面吸附的分子模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To investigate the topographical dependency of protein adsorption, molecular dynamics simulations were employed to describe the adsorption behavior of the tenth type-III module of fibronectin (FN-III10) on nanostructured rutile (110) surfaces. The results indicated that the residence time of adsorbed FN-III10 largely relied on its binding mode (direct or indirect) with the substrate and the region for protein migration on the periphery (protrusion) or in the interior (cavity or groove) of nanostructures. In the direct binding mode, FN-III10 molecules were found to be 'trapped' at the anchoring sites of rutile surface, or even penetrate deep into the interior of nanostructures, regardless of the presented geometrical features. In the indirect binding mode, FN-III10 molecules were indirectly connected to the substrate via a hydrogen-bond network (linking FN-III10 and interfacial hydrations). The facets created by nanostructures, which exerted restraints on protein migration, were suggested to play an important role in the stability of indirect FN-III10-rutile binding. However, a doubly unfavorable situation-indirect FN-III10-rutile connections bridged by a handful of mediating waters and few constraints on movement of protein provided by nanostructures-would result in an early desorption of protein. (C) 2016 Elsevier B.V. All rights reserved.
机译:为了研究蛋白质吸附的形貌依赖性,采用分子动力学模拟描述了纤连蛋白的第十种III型模块(FN-III10)在纳米结构金红石(110)表面上的吸附行为。结果表明,吸附的FN-III10的停留时间主要取决于其与基质的结合模式(直接或间接)以及纳米结构的外围(突起)或内部(腔或槽)中蛋白质迁移的区域。在直接结合模式下,发现FN-III10分子被“捕获”在金红石表面的锚定位置,甚至渗透到纳米结构的内部,无论呈现的几何特征如何。在间接结合模式中,FN-III10分子通过氢键网络(连接FN-III10和界面水合)间接连接到基质。有人认为,由纳米结构产生的刻面对蛋白质迁移具有抑制作用,这些刻面在间接FN-III10-金红石结合的稳定性中起重要作用。然而,双重不利的局面-间接的FN-III10-金红石连接被少量的中介水桥接,并且由纳米结构提供的对蛋白质运动的限制很少-会导致蛋白质的早期解吸。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Applied Surface Science》 |2016年第30期|36-44|共9页
  • 作者单位

    Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150080, Heilongjiang, Peoples R China;

    Harbin Inst Technol, State Key Lab Robot & Syst, Harbin 150080, Heilongjiang, Peoples R China;

    Harbin Inst Technol, Sch Mechatron Engn, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Inst Technol, Sch Mechatron Engn, Harbin 150001, Heilongjiang, Peoples R China;

    Harbin Inst Technol, Sch Mechatron Engn, Harbin 150001, Heilongjiang, Peoples R China;

    Vanderbilt Univ, Dept Biomol & Chem Engn, 221 Kirkland Hall, Nashville, TN 37235 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nanostructure; Protein adsorption; Rutile; Molecular dynamics simulation;

    机译:纳米结构;蛋白质吸附;金红石;分子动力学模拟;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号