...
首页> 外文期刊>Applied Surface Science >Tuning surface porosity on vanadium surface by low energy He+ ion irradiation
【24h】

Tuning surface porosity on vanadium surface by low energy He+ ion irradiation

机译:通过低能He +离子辐照来调节钒表面的孔隙率

获取原文
获取原文并翻译 | 示例

摘要

In the present study, we report on tuning the surface porosity on vanadium surfaces using high-flux, low-energy He+ ion irradiation as function of sample temperature. Polished, mirror-finished vanadium samples were irradiated with 100 eV He' ions at a constant ion-flux of 7.2 x 10(20) ions m(-2) s(-1) for 1 h duration at constant sample temperatures in the wide range of 823-1173 K. Our results show that the surface porosity of V2O5 (naturally oxidized vanadium porous structure, after taking out from UHV) is strongly correlated to the sample temperature and is highly tunable. In fact, the surface porosity significantly increases with reducing sample temperature and reaches up to similar to 87%. Optical reflectivity on these highly porous V2O5 surfaces show 0% optical reflectivity at 670 nm wavelength, which is very similar to that of "black metal". Combined with the naturally high melting point of V2O5, this very low optical reflectivity suggests potential application in solar power concentration technology. Additionally, this top-down approach guarantees relatively good contact between the different crystallites and avoids electrical conductivity limitations (if required). Since V2O5 is naturally a potential photocatalytic material, the resulting sub-micron-sized cube-shaped porous structures could be used in solar water splitting for hydrogen production in energy applications. (C) 2016 Elsevier B.V. All rights reserved.
机译:在本研究中,我们报告了使用高通量,低能量的He +离子辐射作为样品温度的函数来调节钒表面上的孔隙率。抛光的,镜面抛光的钒样品在恒定的样品温度下,以7.2 x 10(20)离子m(-2)s(-1)的恒定离子通量照射100 eV He'离子,持续1 h。结果表明,V2O5(从特高压中取出后,自然氧化的钒多孔结构)的表面孔隙率与样品温度密切相关,并且高度可调。实际上,表面孔隙率会随着样品温度的降低而显着增加,最高可达87%。这些高度多孔的V2O5表面的光学反射率在670 nm波长下显示0%的光学反射率,这与“黑金属”的反射率非常相似。结合V2O5的自然高熔点,这种非常低的光反射率表明了其在太阳能集中技术中的潜在应用。此外,这种自上而下的方法可确保不同微晶之间的相对良好接触,并避免了电导率限制(如果需要)。由于V2O5自然是一种潜在的光催化材料,因此所得的亚微米级立方体形多孔结构可用于太阳能水分解中,用于能源应用中的制氢。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号