...
首页> 外文期刊>Applied Surface Science >Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling
【24h】

Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling

机译:通过DFT和动力学建模研究Pt催化剂上甲烷的干式(CO2)重整

获取原文
获取原文并翻译 | 示例

摘要

Dry reforming of methane (DRM) is a well-studied reaction that is of both scientific and industrial importance. In order to design catalysts that minimize the deactivation and improve the selectivity and activity for a high H-2/CO yield, it is necessary to understand the elementary reaction steps involved in activation and conversion of CO2 and CH4. In our present work, a microkinetic model based on density functional theory (DFT) calculations is applied to explore the reaction mechanism for methane dry reforming on Pt catalysts. The adsorption energies of the reactants, intermediates and products, and the activation barriers for the elementary reactions involved in the DRM process are calculated over the Pt(1 1 1) surface. In the process of CH4 direct dissociation, the kinetic results show that CH dissociative adsorption on Pt(1 1 1) surface is the rate-determining step. CH appears to be the most abundant species on the Pt(1 1 1) surface, suggesting that carbon deposition is not easy to form in CH4 dehydrogenation on Pt(1 1 1) surface. In the process of CO2 activation, three possible reaction pathways are considered to contribute to the CO2 decomposition: (I) CO2* + * -> CO* + O*; (II) CO2* + H* -> COOH* + * -> CO* + OH*; (III) CO2* + H* -> mono-HCOO*+* bi-HCOO* + * [CO2* + H* -> bi-HCOO* + *] -> CHO* + O*. Path I requires process to overcome the activation barrier of 1.809 eV and the forward reaction is calculated to be strongly endothermic by 1.430 eV. In addition, the kinetic results also indicate this process is not easy to proceed on Pt(1 1 1) surface. While the CO2 activation by H adsorbed over the catalyst surface to form COOH intermediate (Path II) is much easier to be carried out with the lower activation barrier of 0.746 eV. The C-O bond scission is the rate-determining step along this pathway and the process needs to overcome the activation barrier of 1.522 eV. Path III reveals the CO2 activation through H adsorbed over the catalyst surface to form HCOO intermediate firstly. This reaction requires a quite high activation barrier and is a strongly endothermic process leading to a very low forward rate constant. In conclusion, Path II is the dominant reaction pathway in CO2 activation. Additionally, there are two pathways of CH oxidation by O: (A) CH* + O* -> CHO* + * -> CO* + H*; (B) CH* + O* -> COH* + * -> CO* + H*. Both the activation barriers and kinetic results demonstrate that Path A is the prior reaction pathway. Furthermore, in the two pathways of CH oxidation by OH: (C) CH* + OH* -> CHOH* + * -> CHO* + H*; (D) CH* + OH* -> CHOH* + * -> COH* + H*. Path C is easier to proceed. In conclusion, the main reaction pathway in CH oxidation according to the mechanism: CH* + OH* -> CHOH* + * -> CHO* + H* -> CO* + 2H*. These results could provide some useful information for the operation of DRM over Pt catalysts, and are helpful to understand the mechanisms of DRM from the atomic scale. (C) 2016 Elsevier B.V. All rights reserved.
机译:甲烷的干重整(DRM)是经过充分研究的反应,具有科学和工业意义。为了设计最小化失活并提高高H-2 / CO收率的选择性和活性的催化剂,有必要了解涉及CO2和CH4活化和转化的基本反应步骤。在我们目前的工作中,基于密度泛函理论(DFT)计算的微动力学模型被用于探索Pt催化剂上甲烷干重整的反应机理。在Pt(1 1 1)表面上计算了反应物,中间体和产物的吸附能以及DRM过程中涉及的基本反应的激活势垒。在CH4直接离解过程中,动力学结果表明CH在Pt(1 1 1)表面的离解吸附是决定速率的步骤。 CH似乎是Pt(1 1 1)表面上最丰富的物质,这表明在Pt(1 1 1)表面CH4脱氢中不容易形成碳沉积。在CO2活化过程中,认为可能有以下三种反应途径导致了CO2分解:(I)CO2 * + *-> CO * + O *; (II)CO2 * + H *-> COOH * + *-> CO * + OH *; (III)CO 2 * + H *->单-HCOO * + * bi-HCOO * + * [CO2 * + H *-> bi-HCOO * + *]-> CHO * + O *。路径I需要克服1.809eV的激活障碍的过程,并且正向反应被计算为强烈吸热1.430eV。此外,动力学结果还表明该过程在Pt(1 1 1)表面上不容易进行。尽管H吸附在催化剂表面以形成COOH中间体(路径II)而使CO2活化更容易以0.746 eV的较低活化势垒进行。 C-O键断裂是沿着该途径的速率决定步骤,该过程需要克服1.522 eV的激活势垒。路径III揭示了通过吸附在催化剂表面上的H首先通过CO 2活化形成HCOO中间体。该反应需要很高的活化势垒,并且是强烈的吸热过程,导致非常低的正向速率常数。总之,路径II是CO2活化的主要反应途径。另外,有两种通过O氧化CH的途径:(A)CH * + O *-> CHO * + *-> CO * + H *; (B)CH * + O *-> COH * + *-> CO * + H *。激活壁垒和动力学结果均表明路径A是先前的反应路径。此外,在通过OH的CH氧化的两个途径中:(C)CH * + OH *-> CHOH * + *-> CHO * + H *; (D)CH * + OH *-> CHOH * + *-> COH * + H *。路径C更容易进行。总之,根据机理,CH氧化的主要反应途径为:CH * + OH *-> CHOH * + *-> CHO * + H *-> CO * + 2H *。这些结果可为在Pt催化剂上DRM的操作提供一些有用的信息,并有助于从原子尺度理解DRM的机理。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Applied Surface Science》 |2016年第15期|79-90|共12页
  • 作者单位

    Chongqing Univ, Minist Educ PRC, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 400044, Peoples R China|Chongqing Univ, Coll Power Engn, Chongqing 400044, Peoples R China;

    Chongqing Univ, Minist Educ PRC, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 400044, Peoples R China|Chongqing Univ, Coll Power Engn, Chongqing 400044, Peoples R China;

    Chongqing Univ, Minist Educ PRC, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 400044, Peoples R China|Chongqing Univ, Coll Power Engn, Chongqing 400044, Peoples R China;

    Chongqing Univ, Minist Educ PRC, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 400044, Peoples R China|Chongqing Univ, Coll Power Engn, Chongqing 400044, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dry reforming; Methane; Pt catalysis; DFT; Kinetic modeling;

    机译:干重整;甲烷;铂催化;DFT;动力学模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号