首页> 外文期刊>Applied Surface Science >CO adsorption on W(100) during temperature-programmed desorption: A combined density functional theory and kinetic Monte Carlo study
【24h】

CO adsorption on W(100) during temperature-programmed desorption: A combined density functional theory and kinetic Monte Carlo study

机译:程序升温脱附过程中CO在W(100)上的吸附:结合密度泛函理论和动力学蒙特卡洛研究

获取原文
获取原文并翻译 | 示例
       

摘要

Using a combined density functional theory (DFT) and kinetic Monte Carlo (KMC) simulations, we study the adsorption at 800 K and subsequent desorption of CO on W(100) at higher temperatures. The resulting TPD profiles are known experimentally to exhibit three desorption peaks beta(1), beta(2), and beta(3) at 930 K, 1070 K, and 1375 K, respectively. Unlike more recent theoretical studies that propose that all three aforementioned peaks are molecularly rather than associatively desorbed, our KMC analyses are in support of the latter, since at 800 K dissociation is facile and that CO exists as dissociation fragments C and O. We show that these peaks arise from desorption from the same adsorption site but whose binding energy varies depending on local environment, that is, the presence of CO as well as dissociation fragments C and O nearby. Furthermore we show that several key parameters, such as desorption, dissociation and recombination barriers all play a key role in the TPD spectra these parameter effectively controls not only the location of the TPD peaks but the shape and width of the desorption peaks as well. Moreover, our KMC simulations reveal that varying the heating rate shifts the peaks but leaves their shape intact. (C) 2016 Elsevier B.V. All rights reserved.
机译:使用组合的密度泛函理论(DFT)和动力学蒙特卡洛(KMC)模拟,我们研究了在800 K下的吸附以及随后在较高温度下W(100)上CO的解吸。实验上已知所得的TPD分布图分别在930 K,1070 K和1375 K处显示三个解吸峰beta(1),beta(2)和beta(3)。与最近的理论研究提出所有上述三个峰均在分子上而不是缔合下解吸的理论不同,我们的KMC分析支持后者,因为在800 K时解离容易,并且CO以解离碎片C和O的形式存在。这些峰来自同一吸附位点的解吸,但其结合能随局部环境而变化,也就是说,CO的存在以及附近的解离碎片C和O的存在。此外,我们显示了几个关键参数,例如解吸,解离和重组障碍都在TPD光谱中起着关键作用,这些参数不仅有效地控制了TPD峰的位置,而且还控制了解吸峰的形状和宽度。此外,我们的KMC模拟结果表明,改变加热速率可以移动峰,但形状不会改变。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号