...
首页> 外文期刊>Applied Surface Science >Photocatalytic hydrogen production from glycerol solution at room temperature by ZnO-ZnS/graphene photocatalysts
【24h】

Photocatalytic hydrogen production from glycerol solution at room temperature by ZnO-ZnS/graphene photocatalysts

机译:ZnO-ZnS /石墨烯光催化剂在室温下由甘油溶液光催化制氢

获取原文
获取原文并翻译 | 示例
           

摘要

Glycerol is a byproduct of biodiesel manufacturing. The room temperature photocatalytic hydrogen generation from glycerol by the ZnO-ZnS/graphene photocatalyst was investigated. The in-situ C K-edge near edge X-ray absorption fine structure (NEXAFS) spectra were measured with/without light illumination to study the electronic properties of photocatalysts at atomic and molecular level. A mechanism of water splitting and glycerol oxidation/reforming reactions over the photocatalyst under light irradiation is proposed. Effects of graphene content in photocatalysts and glycerol concentration in solution on the photocatalytic activity were examined. The results of enhanced photocurrents, fluorescence quenching, NEXAFS spectra, and decreased arc radius of electrochemical impedance spectra of ZnO-ZnS/graphene photocatalysts revealed the fast transfer of photoexcited electrons from ZnO-ZnS nanoparticles to graphene. There was an optimal graphene content and a glycerol concentration for the maximum photocatalytic H-2 production rate (1070 lmol h(-1) g(-1)). Incorporation of graphene can enhance the separation of photogenerated charge through the ZnO-ZnS/graphene interfaces and improve the photocatalytic H2 production rate of the photocatalysts. The composite photocatalysts exhibited improved performance because of efficient charge separation and enhanced light absorption. (C) 2018 Elsevier B.V. All rights reserved.
机译:甘油是生物柴油生产的副产品。研究了ZnO-ZnS /石墨烯光催化剂在室温下由甘油产生的光催化氢。在有/无光照射下测量原位C K边缘近边缘X射线吸收精细结构(NEXAFS)光谱,以研究光催化剂在原子和分子水平上的电子性质。提出了光照射下光催化剂上的水分解和甘油氧化/重整反应的机理。研究了光催化剂中石墨烯含量和溶液中甘油浓度对光催化活性的影响。 ZnO-ZnS /石墨烯光催化剂的光电流增强,荧光猝灭,NEXAFS光谱和电化学阻抗谱的减小的弧半径的结果表明,光激发电子从ZnO-ZnS纳米粒子快速转移至石墨烯。有一个最佳的石墨烯含量和甘油浓度的最大光催化H-2生产率(1070 lmol h(-1)g(-1))。石墨烯的引入可以增强通过ZnO-ZnS /石墨烯界面的光生电荷的分离,并提高光催化剂的光催化H2产生速率。由于有效的电荷分离和增强的光吸收,复合光催化剂表现出改进的性能。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号