...
首页> 外文期刊>Applied Surface Science >Synthesis of Nb doped TiO_2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity
【24h】

Synthesis of Nb doped TiO_2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity

机译:可见光催化活性高的Nb掺杂TiO_2纳米管/氧化石墨烯异质结构光催化剂的合成

获取原文
获取原文并翻译 | 示例

摘要

Limited by the narrowed photoresponse range and unsatisfactory recombination of photoinduced electron-hole pairs, the photocatalytic efficiency of TiO2 is still far below what is expected. Here, we initially doped TiO2 nanotubes (TNTS) by transition metal ion Nb, then it is coupled with reduced graphene oxide (rGO) to construct a heterostructure photocatalyst. The defect state presented in TiO2 leading to the formation of localized midgap states (MS) in the bandgap, which regulating the band structure of TiO2 and extending the optical absorption to visible light region. The internal charge transport and transfer behavior analyzed by electrochemical impedance spectroscopy (EIS) reveal that the coupling of rGO with TNTS results in the formation of electron transport channel in the heterostructure, which makes a great contribution to the photoinduced charge separation. As expected, the Nb-TNTS/rGO exhibits a stable and remarkably enhanced photocatalytic activity in the visible-light irradiation degradation of methylene blue (MB), up to similar to 5 times with respect to TNTS, which is attributed to the effective inhibition of charge recombination, the reduction of bandgap and higher redox potential, as well as the great adsorptivity. (C) 2018 Elsevier B.V. All rights reserved.
机译:受狭窄的光响应范围和光诱导的电子-空穴对的不令人满意的重组的限制,TiO 2的光催化效率仍然远远低于预期。在这里,我们首先用过渡金属离子Nb掺杂TiO2纳米管(TNTS),然后将其与还原的氧化石墨烯(rGO)偶联以构建异质结构光催化剂。 TiO2中出现的缺陷状态导致在带隙中形成局部中间能隙状态(MS),从而调节TiO2的能带结构并将光吸收扩展到可见光区域。电化学阻抗谱(EIS)分析的内部电荷传输和转移行为表明,rGO与TNTS的耦合导致异质结构中电子传输通道的形成,这对光诱导的电荷分离有很大贡献。不出所料,Nb-TNTS / rGO在亚甲基蓝(MB)的可见光辐照降解中表现出稳定且显着增强的光催化活性,相对于TNTS高达5倍,这归因于对NTS的有效抑制。电荷复合,带隙的减小和更高的氧化还原电势以及巨大的吸附性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号