...
首页> 外文期刊>Applied Superconductivity, IEEE Transactions on >Cryogenic Power Conversion for SMES Application in a Liquid Hydrogen Powered Fuel Cell Electric Vehicle
【24h】

Cryogenic Power Conversion for SMES Application in a Liquid Hydrogen Powered Fuel Cell Electric Vehicle

机译:SMES在液态氢动力燃料电池电动汽车中的低温功率转换

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cryogenic power conversion for superconducting magnetic energy storage (SMES) application in a liquid hydrogen powered fuel cell electric vehicle (FCEV) is investigated. Principle and operation strategy of the SMES-based onboard energy system are presented for various operational models. A typical FCEV system equipped with a 720-kJ SMES device is conceptually designed and theoretically modeled with a bridge-type cryogenic chopper, which consists of four metal–oxide–semiconductor field-effect transistors (MOSFETs) cooled by low-temperature gas hydrogen . The bridge-type cryogenic chopper has higher energy storage and utilization efficiencies than the conventional one because the MOSFETs have much less thermal loss compared with normal operations of the MOSFETs and diodes. Both the start-up time and the regenerative braking time of the FCEV are significantly reduced with the introduction of the SMES. The design and tests of an experimental energy exchange prototype are also presented to verify the feasibility of the proposed high-efficiency SMES system incorporated with the FCEV.
机译:研究了液态氢动力燃料电池电动汽车(FCEV)中超导磁能存储(SMES)应用的低温功率转换。针对各种运行模型,提出了基于SMES的车载能源系统的原理和运行策略。一个典型的配备720kJ SMES装置的FCEV系统在概念上进行了设计,并在理论上采用了桥式低温斩波器进行建模,该斩波器由四个由低温气体氢气冷却的金属氧化物半导体场效应晶体管(MOSFET)组成。桥式低温斩波器比常规斩波器具有更高的能量存储和利用效率,因为与MOSFET和二极管的正常工作相比,MOSFET的热损耗要小得多。随着SMES的推出,FCEV的启动时间和再生制动时间都大大减少了。还介绍了实验性能量交换原型的设计和测试,以验证与FCEV结合的拟议高效SMES系统的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号