首页> 外文期刊>Applied Physics >Improving osteoblasts cells proliferation via femtosecond laser surface modification of 3D-printed poly-ε-caprolactone scaffolds for bone tissue engineering applications
【24h】

Improving osteoblasts cells proliferation via femtosecond laser surface modification of 3D-printed poly-ε-caprolactone scaffolds for bone tissue engineering applications

机译:通过飞秒激光表面修饰3D打印的聚ε-己内酯骨架的骨组织工程应用,改善成骨细胞的增殖

获取原文
获取原文并翻译 | 示例
           

摘要

Synthetic polymer biomaterials incorporating cells are a promising technique for treatment of orthopedic injuries. To enhance the integration of biomaterials into the human body, additional functionalization of the scaffold surface should be carried out that would assist one in mimicking the natural cellular environment. In this study, we examined poly-epsilon-caprolactone (PCL) fiber matrices in view of optimizing the porous properties of the constructs. Altering the porosity of a PCL scaffold is expected to improve the material's biocompatibility, thus influencing its osteoconductivity and osteointegration. We produced 3D poly-epsilon-caprolactone (PCL) matrices by a fused deposition modeling method for bone and cartilage tissue engineering and performed femtosecond (fs) laser modification experiments to improve the surface properties of the PCL construct. Femtosecond laser processing is one of the useful tools for creating a vast diversity of surface patterns with reproducibility and precision. The processed surface of the PCL matrix was examined to follow the effect of the laser parameters, namely the laser pulse energy and repetition rate and the number (N) of applied pulses. The modified zones were characterized by scanning electron microscopy (SEM), confocal microscopy, X-ray computed tomography and contact angle measurements. The results obtained demonstrated changes in the morphology of the processed surface. A decrease in the water contact angle was also seen after fs laser processing of fiber meshes. Our work demonstrated that a precise control of material surface properties could be achieved by applying a different number of laser pulses at various laser fluence values. We concluded that the structural features of the matrix remain unaffected and can be successfully modified through laser postmodification. The cells tests indicated that the micro-modifications created induced MG63 and MC3T3 osteoblast cellular orientation. The analysis of the MG63 and MC3T3 osteoblast attachment suggested regulation of cells volume migration.
机译:包含细胞的合成聚合物生物材料是一种有潜力的骨科损伤治疗技术。为了增强生物材料到人体中的整合,应该对支架表面进行额外的功能化,这将有助于模仿自然细胞环境。在这项研究中,我们检查了聚ε-己内酯(PCL)纤维基质,以优化构建体的多孔性能。改变PCL支架的孔隙率有望改善该材料的生物相容性,从而影响其骨传导性和骨整合性。我们通过用于骨骼和软骨组织工程的融合沉积建模方法生产了3D聚ε-己内酯(PCL)基质,并进行了飞秒(fs)激光修饰实验以改善PCL构造的表面性能。飞秒激光加工是创建具有重现性和精度的多种表面图案的有用工具之一。检查PCL矩阵的加工表面,以遵循激光参数的影响,即激光脉冲能量和重复率以及施加的脉冲数(N)。通过扫描电子显微镜(SEM),共聚焦显微镜,X射线计算机断层扫描和接触角测量来表征改性区。获得的结果证明了加工表面的形态发生了变化。在纤维网的fs激光处理之后,还发现水接触角减小。我们的工作表明,通过在不同的激光注量值下施加不同数量的激光脉冲,可以实现材料表面性能的精确控制。我们得出的结论是,基质的结构特征不受影响,可以通过激光后修饰成功地进行修饰。细胞测试表明,微修饰产生了诱导的MG63和MC3T3成骨细胞定向。 MG63和MC3T3成骨细胞附着的分析表明细胞体积迁移的调节。

著录项

  • 来源
    《Applied Physics》 |2018年第6期|413.1-413.15|共15页
  • 作者单位

    Bulgarian Acad Sci Inst Elect 72 Tsarigradsko Chaussee Blvd BU-1784 Sofia Bulgaria;

    Warsaw Univ Technol Fac Mat Sci & Engn 141 Woloska Str PL-02507 Warsaw Poland;

    Sofia Univ St Kliment Ohridski Phys Dept 5J Bourchier Blvd Sofia Bulgaria;

    Univ Ghent Dept Basic Med Sci De Pintelaan 185 6B3 B-9000 Ghent Belgium;

    High Q Lasers GmbH Feldgut 9 A-6830 Rankweil Austria;

    Vienna Univ Technol Inst Gen Phys Wiedner Hauptstr 8-10-134 A-1040 Vienna Austria;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号