首页> 外文期刊>Applied Physics >Experimental characterization and atomistic modeling of interfacial void formation and detachment in short pulse laser processing of metal surfaces covered by solid transparent overlayers
【24h】

Experimental characterization and atomistic modeling of interfacial void formation and detachment in short pulse laser processing of metal surfaces covered by solid transparent overlayers

机译:固体透明覆盖层覆盖的金属表面短脉冲激光加工中界面空隙形成和脱离的实验表征和原子建模

获取原文
获取原文并翻译 | 示例
           

摘要

The short pulse laser interaction with metal surfaces covered by solid transparent overlayers is investigated in experiments and atomistic simulations, with a particular aim of revealing the mechanisms responsible for structural modification of the metal-overlayer interfacial regions. Experimental characterization of Al-silica targets modified by single-pulse laser irradiation with the pulse duration of 10 ps reveals the transitions from the generation of extended interfacial voids with internal nanoscale surface roughness to the partial detachment of the over-layer from the metal substrate, and to the cracking/chipping or complete removal of the overlayer as the laser fiuence increases. The mechanisms responsible for the appearance, growth, and percolation of the interfacial voids leading to the detachment of the overlayer from the metal substrate are investigated in a large-scale atomistic simulation. The results of the simulation demonstrate that the processes of nucleation and growth of the interfacial voids are driven by the dynamic relaxation of laser-induced stresses proceeding simultaneously with rapid phase transformations and temperature variation in the interfacial region. The growth and coalescence of the interfacial voids results in the formation of liquid bridges connecting the overlayer and the metal substrate, whereas solidification of the transient liquid structures produced by the breakup of the liquid bridges may be responsible for the formation of the nanoscale roughness of the interfacial voids observed in experiments. Computational analysis of the effect of preexisting interfacial voids reveals a complex dynamic picture of the initial expansion and subsequent compaction of the surface region of the metal substrate and suggests a possible scenario for the formation of voids below the metal-overlayer interface.
机译:在实验和原子模拟中研究了短脉冲激光与固体透明覆盖层覆盖的金属表面的相互作用,其特殊目的是揭示负责金属-金属层界面区域结构改性的机理。通过单脉冲激光辐照以10 ps的脉冲持续时间修饰的Al-二氧化硅靶材的实验表征揭示了从生成具有内部纳米级表面粗糙度的扩展界面空隙到上层从金属基材部分剥离的过渡,随着激光强度的增加,表面层会破裂/碎裂或完全去除。在大规模的原子模拟中,研究了导致界面空洞出现,生长和渗透的机制,导致界面层从金属基底上脱离。仿真结果表明,界面空隙的成核和生长过程是由激光诱导的应力的动态弛豫驱动的,该应力与界面区域的快速相变和温度变化同时进行。界面空隙的生长和聚结导致形成连接上覆层和金属基底的液桥,而由液桥破裂产生的瞬态液体结构的凝固可能是造成纳米级粗糙度的原因。在实验中观察到界面空隙。对先前存在的界面空隙的影响进行的计算分析揭示了金属基材表面区域的初始膨胀和随后的压实的复杂动态图,并提出了在金属-层界面下方形成空隙的可能方案。

著录项

  • 来源
    《Applied Physics》 |2016年第2期|407.1-407.11|共11页
  • 作者单位

    Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, VA 22904-4745, USA;

    Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, VA 22904-4745, USA;

    Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, VA 22904-4745, USA;

    Electro Scientific Industries, Inc., 13900 NW Science Park Drive, Portland, OR 97229, USA;

    Electro Scientific Industries, Inc., 13900 NW Science Park Drive, Portland, OR 97229, USA;

    Electro Scientific Industries, Inc., 13900 NW Science Park Drive, Portland, OR 97229, USA;

    Electro Scientific Industries, Inc., 13900 NW Science Park Drive, Portland, OR 97229, USA;

    Electro Scientific Industries, Inc., 13900 NW Science Park Drive, Portland, OR 97229, USA,The International Society for Optics and Photonics, SPIE, Bellingham, WA 98227-0010, USA;

    Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, VA 22904-4745, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号