首页> 外文期刊>Applied Physics Letters >Realizing high thermoelectric performance in p-type Si_(1-x-y)Ce_xSn_y thin films at ambient temperature by Sn modulation doping
【24h】

Realizing high thermoelectric performance in p-type Si_(1-x-y)Ce_xSn_y thin films at ambient temperature by Sn modulation doping

机译:通过SN调制掺杂在环境温度下实现P型Si_(1-X-Y)CE_XSN_Y薄膜的高热电性能

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, we report a power factor (PF) value as high as 1950 μW m~(-1) K~(-2) for B-ion implanted thermoelectric Si_(1-x-y)Ge_xSn_y ternary alloy films at ambient temperature by radio frequency sputtering followed by a short-term rapid thermal annealing heat treatment. The record high PF value was realized by modulation doping of Sn in the Si_(1-x-y)Ge_xSn_y film. It was found that using metallic Sn as nanoparticles and Si_(1-x-y)Ge_xSn_y as the matrix leads to a large enhancement of the carrier concentration and a very small decrease in carrier mobility. As a result, the electrical conductivity and power factor of the modulation doped Si_(1-x-y)Ge_xSn_y alloy were greatly improved. The findings of this study present emerging opportunities for the modulation of Si integration thermoelectrics as wearable devices charged by body temperature.
机译:在这项研究中,我们在环境温度下向B离子注入的热电Si_(1-xy)Ge_xsn_y三元合金薄膜报告高达1950μWM〜(-1)k〜(-2)的功率因数(PF)值射频溅射随后是短期快速热退火热处理。通过在SI_(1-X-Y)GE_XSN_Y电影中调制掺杂来实现记录的高PF值。发现使用金属Sn作为纳米颗粒和Si_(1-X-Y)Ge_xSn_y,因为基质导致载流子浓度的大增强和载流子迁移率的非常小的降低。结果,调制掺杂Si_(1-X-Y)Ge_xsn_y合金的电导率和功率因数大大提高。本研究的调查结果目前为SI集成热电测量的新出现机会作为由体温充电的可穿戴设备。

著录项

  • 来源
    《Applied Physics Letters》 |2020年第5期|053903.1-053903.5|共5页
  • 作者单位

    Guangxi Key Laboratory of Information Material School of Material Science and Engineering Guilin University of Electronic Technology Guilin 541004 China Research Center for Smart Energy Technology Toyota Technological Institute Nagoya 468-8511 Japan;

    Guangxi Key Laboratory of Information Material School of Material Science and Engineering Guilin University of Electronic Technology Guilin 541004 China;

    Guangxi Key Laboratory of Information Material School of Material Science and Engineering Guilin University of Electronic Technology Guilin 541004 China;

    Guangxi Key Laboratory of Information Material School of Material Science and Engineering Guilin University of Electronic Technology Guilin 541004 China;

    Department of Materials Physics Graduate School of Engineering Nagoya University Nagoya 464-8603 Japan PRESTO Japan Science and Technology Agency 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan;

    Department of Materials Physics Graduate School of Engineering Nagoya University Nagoya 464-8603 Japan Institute of Materials and Systems for Sustainability Nagoya University Nagoya 464-8601 Japan;

    Research Center for Smart Energy Technology Toyota Technological Institute Nagoya 468-8511 Japan Institute of Materials Innovation Nagoya University Nagoya 464-8603 Japan;

    Division of Materials Science and Engineering Graduate School of Science and Technology Meijo University Nagoya 468-8502 Japan;

    Guangxi Key Laboratory of Information Material School of Material Science and Engineering Guilin University of Electronic Technology Guilin 541004 China Japan Fine Ceramics Center 2-4-1 Mutsuno Atsuta-ku Nagoya 456-8587 Japan;

    Guangxi Key Laboratory of Information Material School of Material Science and Engineering Guilin University of Electronic Technology Guilin 541004 China Department of Materials Science and Engineering Faculty of Engineering Shibaura Institute of Technology Tokyo 135-8548 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 22:17:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号