首页> 外文期刊>Applied Physics Letters >Charge transport mechanism in periodic mesoporous organosilica low-k dielectric
【24h】

Charge transport mechanism in periodic mesoporous organosilica low-k dielectric

机译:周期性介孔有机硅低k介质中的电荷传输机制

获取原文
获取原文并翻译 | 示例
       

摘要

Periodic mesoporous organosilicas are promising insulating materials for multilevel interconnects of integrated circuits because of their unique structural and mechanical properties. Therefore, understanding of their electrical characteristics, particularly the charge transport mechanism, is important. It is generally accepted that the thin dielectric film charge transport is limited by the Frenkel effect. In our work, the charge transport of the periodic mesoporous organosilica structure is analyzed with four volume-limited charge transport models. It is established that the Frenkel model of Coulomb trap ionization, the Hill-Adachi model of overlapping Coulomb potentials and the Makram-Ebeid and Lannoo model of multiphonon isolated traps ionization quantitatively, do not describe the charge transport of the periodic mesoporous organosilica low-k dielectric. The Nasyrov-Gritsenko model gives a consistent explanation of the charge transport of the periodic mesoporous organosilica low-k structure at different temperatures with the trap concentration N=5.4x10(20)cm(-3) and effective mass m(*)=0.82m(e). The thermal trap energy W-t=1.6eV and the optical trap energy W-opt=3.2eV obtained from the simulation by the Nasyrov-Gritsenko model correspond to the Si-Si defect.
机译:周期性的介孔有机硅因其独特的结构和机械性能而成为用于集成电路多层互连的有前途的绝缘材料。因此,了解它们的电特性,尤其是电荷传输机制很重要。通常认为,电介质薄膜的电荷传输受到弗伦克尔效应的限制。在我们的工作中,使用四个体积受限的电荷传输模型分析了周期性介孔有机硅结构的电荷传输。建立了库仑阱电离的Frenkel模型,库仑势重叠的Hill-Adachi模型以及多声子隔离阱的Makram-Ebeid和Lannoo模型的定量电离,未描述周期性介孔有机硅低k的电荷传输电介质。 Nasyrov-Gritsenko模型对陷阱温度N = 5.4x10(20)cm(-3)和有效质量m(*)= 0.82的周期性介孔有机硅低k结构在不同温度下的电荷传输给出了一致的解释我)。通过Nasyrov-Gritsenko模型的模拟获得的热阱能量W-t = 1.6eV和光阱能量W-opt = 3.2eV对应于Si-Si缺陷。

著录项

  • 来源
    《Applied Physics Letters》 |2019年第8期|082904.1-082904.5|共5页
  • 作者单位

    Rzhanov Inst Semicond Phys SB RAS 13 Lavrentiev Ave Novosibirsk 630090 Russia|Novosibirsk State Univ Dept Phys 2 Pirogov Str Novosibirsk 630090 Russia;

    Rzhanov Inst Semicond Phys SB RAS 13 Lavrentiev Ave Novosibirsk 630090 Russia|Novosibirsk State Univ Dept Phys 2 Pirogov Str Novosibirsk 630090 Russia|Novosibirsk State Tech Univ Automat & Comp Engn Dept 20 Marx Ave Novosibirsk 630073 Russia;

    MIREA Russian Technol Univ 78 Vernadsky Ave Moscow 119454 Russia;

    MIREA Russian Technol Univ 78 Vernadsky Ave Moscow 119454 Russia|North China Univ Technol 5 Jinyuanzhuang Rd Beijing 100144 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:35:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号