首页> 外文期刊>Applied Physics Letters >Meandering growth of in-plane silicon nanowire springs
【24h】

Meandering growth of in-plane silicon nanowire springs

机译:平面硅纳米线弹簧的曲折增长

获取原文
获取原文并翻译 | 示例
       

摘要

Despite the fundamental difference in material systems and temporal evolution, self-oscillating growth of silicon nanowires (SiNWs), led by metal droplets, resembles very much natural river meanders in terms of their sinuosity, fractal dimensions, and scaling law. Both of them are driven by the release of higher potential energy stored in the disorder hydrogenated amorphous Si (a-Si:H) matrix or at highlands, tailored by a streamwise flow mechanism and subject to an erodible boundary constraint imposed by the a-Si:H thin film or the soil banks, respectively. Under specific conditions, the cross-droplet/stream velocity difference can be magnified, during the in-plane growth of SiNWs, to stimulate regular swaggering dynamics that produce continuous and smooth SiNW meanders. This interesting phenomenon indicates a rather simple and highly efficient strategy to shape complex elastic channels with only a few control parameters. A kinetic model has been established to explain the underlying mechanism of the self-oscillating meandering growth, which has unique potential to transform rigid SiNW channels into elastic forms for flexible or stretchable electronic applications.
机译:尽管材料系统和时间演化存在根本差异,但以金属滴为首的硅纳米线(SiNW)的自激生长在弯曲度,分形维数和水垢定律方面非常类似于自然的河曲。两者都是由无序氢化非晶硅(a-Si:H)矩阵中或高地上存储的较高势能的释放驱动的,这些势能是通过流式流动机制定制的,并受到a-Si施加的易腐蚀边界约束:H薄膜或土堤。在特定条件下,在SiNW的面内生长过程中,可以放大跨液滴/流速度差,以激发规则的摇晃动力学,从而产生连续且平滑的SiNW曲折。这种有趣的现象表明,仅需几个控制参数即可成形复杂的弹性通道的方法相当简单高效。建立了动力学模型来解释自振荡弯曲生长的潜在机理,该机理具有将刚性SiNW通道转换为柔性或可拉伸电子应用的弹性形式的独特潜力。

著录项

  • 来源
    《Applied Physics Letters》 |2019年第23期|233103.1-233103.5|共5页
  • 作者单位

    Nanjing Univ, Sch Elect Sci & Engn, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Nanjing Univ, Sch Elect Sci & Engn, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Nanjing Univ, Sch Elect Sci & Engn, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Nanjing Univ, Sch Elect Sci & Engn, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Nanjing Univ, Sch Elect Sci & Engn, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China;

    Ecole Polytech, IP Paris, CNRS, LPICM, F-91128 Palaiseau, France;

    Nanjing Univ, Sch Elect Sci & Engn, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China|Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China|Ecole Polytech, IP Paris, CNRS, LPICM, F-91128 Palaiseau, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:18:09

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号