首页> 外文期刊>Applied Physics Letters >Reduced stability of copper interconnects due to wrinkles and steps on hexagonal boron nitride substrates
【24h】

Reduced stability of copper interconnects due to wrinkles and steps on hexagonal boron nitride substrates

机译:由于六方氮化硼衬底上的褶皱和台阶,导致铜互连的稳定性降低

获取原文
获取原文并翻译 | 示例
           

摘要

There is great scientific and technological interest in the use of chemical-vapor-deposition grown hexagonal boron nitride dielectric substrates for microelectronics applications. This interest stems from its superior heat spreading capability compared to silicon dioxide as well as the lack of surface dangling bonds or charge traps in hexagonal boron nitride which results in superior performance for graphene based electronics devices. However, surface heterogeneities, such as wrinkles or steps, are ubiquitous in such devices due to the fabrication and processing of chemical vapor deposition grown hexagonal boron nitride. In this study, we characterize the effect of such surface heterogeneities on the stability of copper interconnects used in microelectronics devices. Based on the theoretical thermo-physical properties of the constituent thin film layers, our simulations predict that copper interconnects deposited on hexagonal boron nitride can withstand ~1.9 times more power than on a silicon dioxide substrate, due to its superior in-plane thermal conductivity. However, our electrical measurements reveal that copper wires melt and fail at consistently lower current densities on hexagonal boron nitride than on silicon dioxide. This was verified by testing in air as well as under vacuum. Scanning electron microscopy and atomic force microscopy characterization of the hexagonal boron nitride surface indicates that this contradictory result is due to nanoscale surface non-uniformities (i.e., wrinkles and steps) which are omnipresent in chemical-vapor-deposition grown and transferred hexagonal boron nitride films. Our results highlight the critical need for improved processing methods before large-scale microelectronics applications of chemical vapor deposition grown hexagonal boron nitride can be realized.
机译:将化学气相沉积生长的六方氮化硼六方氮化硼电介质基板用于微电子应用具有极大的科学技术兴趣。引起这种兴趣的原因在于,与二氧化硅相比,它具有出色的散热能力,并且在六方氮化硼中缺乏表面悬挂键或电荷陷阱,从而为基于石墨烯的电子设备提供了卓越的性能。然而,由于化学气相沉积生长的六方氮化硼的制造和加工,在这种装置中普遍存在表面异质性,例如皱纹或台阶。在这项研究中,我们表征了这种表面异质性对微电子器件中使用的铜互连的稳定性的影响。根据组成薄膜层的理论热物理特性,我们的模拟预测,由于六方氮化硼上的铜互连具有优异的面内导热性,因此其承受的功率是二氧化硅基板上的1.9倍。但是,我们的电学测量表明,六方氮化硼上的铜线熔化并以低于二氧化硅的电流密度失效。通过在空气中以及在真空下进行测试来验证这一点。六方氮化硼表面的扫描电子显微镜和原子力显微镜表征表明,该矛盾的结果是由于化学气相沉积生长和转移的六方氮化硼薄膜中普遍存在的纳米级表面不均匀性(即皱纹和台阶)所致。 。我们的结果表明,在实现化学气相沉积生长的六方氮化硼的大规模微电子应用之前,迫切需要改进的加工方法。

著录项

  • 来源
    《Applied Physics Letters》 |2014年第12期|123108.1-123108.5|共5页
  • 作者单位

    Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA;

    Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA;

    Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA;

    Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA;

    Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA;

    Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA, Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号