首页> 外文期刊>Applied Physics Letters >In-situ high resolution transmission electron microscopy observation of silicon nanocrystal nucleation in a SiO_2 bilayered matrix
【24h】

In-situ high resolution transmission electron microscopy observation of silicon nanocrystal nucleation in a SiO_2 bilayered matrix

机译:SiO_2双层基质中硅纳米晶成核的原位高分辨率透射电镜观察

获取原文
获取原文并翻译 | 示例
           

摘要

Solid-state nucleation of Si nanocrystals in a SiO_2 bilayered matrix was observed at temperatures as low as 450 ℃. This was achieved by aberration corrected high-resolution transmission electron microscopy (HRTEM) with real-time in-situ heating up to 600 ℃. This technique is a valuable characterization tool especially with the recent interest in Si nanostructures for light emitting devices, non-volatile memories, and third-generation photovoltaics which all typically require a heating step in their fabrication. The control of size, shape, and distribution of the Si nanocrystals are critical for these applications. This experimental study involves in-situ observation of the nucleation of Si nanocrystals in a SiO_2 bilayered matrix fabricated through radio frequency co-sputtering. The results show that the shapes of Si nanocrystals in amorphous SiO_2 bilayered matrices are irregular and not spherical, in contrast to many claims in the literature. Furthermore, the Si nanocrystals are well confined within their layers by the amorphous SiO_2. This study demonstrates the potential of in-situ HRTEM as a tool to observe the real time nucleation of Si nanocrystals in a SiO_2 bilayered matrix. Furthermore, ideas for improvements on this in-situ heating HRTEM technique are discussed.
机译:在低至450℃的温度下观察到SiO_2双层基质中Si纳米晶体的固态成核。这是通过像差校正的高分辨率透射电子显微镜(HRTEM)以及高达600℃的实时原位加热实现的。该技术是一种有价值的表征工具,尤其是最近对发光器件,非易失性存储器和第三代光伏器件的Si纳米结构产生了兴趣,而这些器件在制造过程中通常都需要加热步骤。 Si纳米晶体的尺寸,形状和分布的控制对于这些应用至关重要。这项实验研究涉及就地观察通过射频共溅射制备的SiO_2双层基质中Si纳米晶体的形核。结果表明,与文献中的许多主张相反,非晶态SiO_2双层基质中的Si纳米晶体的形状是不规则而不是球形的。此外,Si纳米晶体被非晶SiO_2很好地限制在它们的层内。这项研究表明原位HRTEM作为观察SiO_2双层基质中Si纳米晶体实时成核的工具的潜力。此外,讨论了改进这种原位加热HRTEM技术的想法。

著录项

  • 来源
    《Applied Physics Letters》 |2014年第5期|053116.1-053116.5|共5页
  • 作者单位

    School of Photovoltaic and Renewable Engineering, University of New South Wales, Sydney,New South Wales 2052, Australia;

    Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City,Haifa 32000, Israel;

    School of Photovoltaic and Renewable Engineering, University of New South Wales, Sydney,New South Wales 2052, Australia;

    School of Photovoltaic and Renewable Engineering, University of New South Wales, Sydney,New South Wales 2052, Australia;

    School of Photovoltaic and Renewable Engineering, University of New South Wales, Sydney,New South Wales 2052, Australia;

    School of Photovoltaic and Renewable Engineering, University of New South Wales, Sydney,New South Wales 2052, Australia;

    School of Photovoltaic and Renewable Engineering, University of New South Wales, Sydney,New South Wales 2052, Australia;

    School of Photovoltaic and Renewable Engineering, University of New South Wales, Sydney,New South Wales 2052, Australia;

    School of Photovoltaic and Renewable Engineering, University of New South Wales, Sydney,New South Wales 2052, Australia;

    Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City,Haifa 32000, Israel;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号