...
首页> 外文期刊>Applied Physics Letters >Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems
【24h】

Metallic attenuated total reflection infrared hollow fibers for robust optical transmission systems

机译:金属衰减全反射红外中空纤维,用于坚固的光学传输系统

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A durable metallic attenuated total reflection (ATR) hollow fiber (bore size: 1.45 mm, wall thickness: 50 μm) was designed and fabricated based on a nickel capillary tube and hexagonal germanium dioxide (GeO_2). The anomalous dispersion of the hexagonal GeO_2 layer grown inside a nickel tube achieves low-loss light transmission at two peak-power wavelengths for CO_2 laser devices (10.2 and 10.6 μm). An 11-28 W, 10.2 or 10.6 μm CO_2 laser power was steadily delivered via a fiber elastically bent from 0° to 90° (radius: 45 cm) for over 40 min (transmission loss: 0.22 to 4.2 dB/m). Theoretically fitting the measured temperatures showed that front-end clipping caused greater thermal loading than the distributed mode absorption. The maximum external temperature of a nickel ATR fiber is much lower than that of a silica glass ATR fiber owing to their different heat dissipation abilities. The HE_(11) mode purity of the output beam profiles decreased from 90.3% to 44.7% as the bending angle increased from 0° to 90°. Large core sizes and wall roughnesses (scattering loss 0.04 dB/m) contributed to mode mixing and excess losses that were above the value predicted by the classical Marcatili and Schmeltzer equation (0.024-0.037 dB/m).
机译:基于镍毛细管和六角形二氧化锗(GeO_2)设计并制造了耐用的金属衰减全反射(ATR)中空纤维(孔径:1.45 mm,壁厚:50μm)。在镍管内生长的六角形GeO_2层的反常色散在CO_2激光设备(10.2和10.6μm)的两个峰值功率波长处实现了低损耗光传输。通过从0°到90°(半径:45 cm)弹性弯曲的光纤稳定传递11-28 W,10.2或10.6μm的CO_2激光功率超过40分钟(传输损耗:0.22至4.2 dB / m)。从理论上拟合测得的温度表明,前端削波比分布模式吸收引起更大的热负荷。镍ATR纤维的最高外部温度由于其散热能力不同而远低于石英玻璃ATR纤维。当弯曲角度从0°增大到90°时,输出光束轮廓的HE_(11)模式纯度从90.3%降低到44.7%。大的铁芯尺寸和壁面粗糙度(散射损耗为0.04 dB / m)导致模式混合和过量损耗超过了经典的Marcatili和Schmeltzer方程所预测的值(0.024-0.037 dB / m)。

著录项

  • 来源
    《Applied Physics Letters》 |2014年第1期|011102.1-011102.4|共4页
  • 作者单位

    Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China;

    Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China;

    Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China;

    Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China;

    Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China,National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-tian Road, Shanghai 200083, China;

    Department of Physics, Shanghai Normal University, 100 Gui Lin Road, Shanghai 200234, China;

    School of Information Science and Engineering, Fudan University, 220 Handan Road, Shanghai 200433, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号